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0. Introduction

This study examines blending, that is “an intentional fusion of usually two words where

a part of the first source word (sw1) – usually the beginning of sw1 – is combined with a

part of the second source word (sw2) – usually the end of sw2 – where at least one source

word  is  shortened  and/or  the  fusion  may  involve  overlap  of  sw1 and  sw 2”  [Gries

2012: 146]. Blending presents a curious case of word formation as it does not appear to

be  rule-governed  as  other  derivational  processes  –  usually,  blending  involves  a

conscious  effort  that  involves  word  play,  which  often  violates  rigid  morphological

rules;  it  is  less productive, yet at the same time, arguably more creative than most

other  derivational  processes;  and  while  it  is  superficially  quite  similar  to  other

intentional word formation processes such as compounding, clipping, abbreviations,

and acronyms, blending has received far less attention, maybe because the intricate

interplay  between  orthography  and  pronunciation  at  play  in  blending  is  not  a

centerpiece of linguistic theory (see Gries [2012: 145]).

Much  of  our  previous  knowledge  of  blends  is  based  on  observational  data  that,

ultimately, may entail the risk of being opportunistic data samples. Therefore, in order

to validate previous work based on these kinds of data, this paper compares results
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from  an  experimentally solicited  sample  of  blends  to  the  results  from  previously-

collected observational data by studying the following three hypotheses:

• Hypothesis 1: the shorter source word contributes more of itself to the blend;

• Hypothesis 2: sw2 determines the stress of the blend (more than sw1); and

• Hypothesis 3: blending maximizes similarity between source words and blends.

We first summarize previous research in particular with regard to the classificatory

and descriptive questions they discussed and the kinds of data they used, before we

turn to a description of our experiment and the data it provided (Section 2). Then, each

of the three hypotheses is discussed (in Sections 3,  4,  and 5 respectively) before we

conclude (Section 6).

 

1. Previous research

Earlier research on blends focused mostly on classifying different types of blends, and

how to distinguish blending from other word formation processes. One of the first such

studies on blends is Pound [1914], who analyzed 314 blends. Pound defines a blend as

“two or more words, often of cognate sense, telescoped as it were into one; as factitious

conflations which retain,  for a while at least,  the suggestive power of their various

elements” [Pound 1914: 1]. She argues that blends, which clearly fuse meanings and are

consciously  coined,  should  be  considered  distinct  from  analogical  extensions  and

enlargements  since  these  do  not  exhibit  semantic  fusion  and  are  created

unintentionally. Less clear to Pound is the distinction between blends and contractions

[Pound 1914: 11]. Pound proposes qualitative labels such as literary coinages, speech

errors, and conscious folk formations. In terms of structural analysis, however, Pound

offers no groupings and even warns that “no very definite grouping seems advisable”

since source words are combined in (apparently) unpredictable ways [1914: 22].

Algeo [1977: 48] defines blends as “a combination of two or more forms, at least one of

which has  been shortened in  the  process  of  combination.”  This  definition is  based

solely on blend structure and does not account for troublesome cases like meritocracy, 

which Algeo [1977: 54]  defines as  a  derivative that  combines with the form -ocracy.

However, under Algeo’s own definition, meritocracy could be understood as a blend of

merit and aristocracy. Algeo goes on to say that in some cases blends cannot be clearly

distinguished  from  other  derivational  processes.  For  example,  breadth  could  be

understood as a blend (OE brede x length) but also as an analogical extension long → 

length :  broad  →  x [1977: 51].  Differently  from  Pound [1914],  Algeo  offers  two  main

classifications of  blends.  A first  classification groups blends structurally into blends

with phonemic overlap, blends with clipping, and blends with both phonemic overlap

and  clipping.  A  second  classification  distinguishes  between  syntagmatic  blends,  or

telescope blends, of words that usually co-occur sequentially, like radarange (radar ×

range),  and  associative  blends,  which  are  blends  whose  source  words  are  usually

semantically linked in the coiner’s mind.

Many  researchers  have  articulated  doubt  that  the  formation  of  blends  obeys  any

systematic  rules  –  Bauer,  for  example,  states that  “in  blending,  the  blender  is

apparently free to take as much or as little from either base as is felt to be necessary or

desirable. […] Exactly what the restrictions are, however, beyond pronounceability and

spellability is far from clear” [Bauer 1983: 225]. Nevertheless, several studies have made

an  effort  to identify  the  cognitive  determinants  of  blend  formation. For  example, 
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Kelly’s [1998] analysis of 426 blends supports the idea that blending is predictable by

revealing the following systematicities:

• the  first  source  words  found  in  the  blends  are  significantly  shorter,  significantly  more

frequent,  and denote significantly more prototypical  category members than the second

source words;

• the breakpoints of blends occur significantly more at syllable/word breaks than elsewhere

(e.g.,  fool ×  philosopher →  foolosopher,  scum ×  company  →  scumpany,  or  sun ×  umbrella →
sunbrella); furthermore, within-syllable breaks usually preserved the rime (e.g., breakfast ×

lunch → brunch, channel × tunnel → chunnel, or flight × plane→ flane).

Gries  [2004a]  further  examines  the  amount  of  information  each  source  word

contributes and the similarity of the source words to the blend. Building on Kaunisto

[2000], Gries considers not only the graphemic, but also phonemic contributions of the

source words to the blend, alongside length and medium as additional variables. The

results of a loglinear analysis revealed that sw2 tends to be longer and contribute more

of itself than sw1. Interestingly, his analysis reveals that the interaction between length

and contribution is strong enough to not be affected by medium; that is, his results

reveal a strong graphemic influence on blend formation, which is not observed in many

other linguistic processes.

Gries [2004b] investigates the degree of recognizability of the blend and the similarity

of the sws to the blend. Examining the stress patterns of 614 blends with up to four

syllables, Gries finds that sw2 plays a dominant role in determining the blend’s stress

pattern.

Gries [2012] distinguishes, if only heuristically, three stages of the blending process – (i)

the selection of the source words to blend, (ii) the decision how to order them in the

blend, and (iii) the decision how to split them up for the fusion – and shows that each of

the stages exhibits distinct and significant patterns in their own right, but also when

compared  to  (authentic  and  induced)  error  blends  with  regard  to  lengths  and

frequencies of source words, the similarities of source words to each other, and to the

resulting blend (e.g.,  in terms of shared substrings,  string-edit  distances,  and stress

patterns).

While  these  and  other  previous  studies  (see  Renner  et  al. [2012])  have  produced  a

wealth of results, they were all based on observational samples of blends collected by

the  researcher.  This  is  potentially  problematic  in  the  same  way  that  speech  error

collections often studied in the 1970s and 1980s are: it is not clear that the collection of

the data is  not affected by the ease with which certain blends can be perceived or

memorized. In other words, not all blends occurring in real life – the population of

blends,  so  to  speak  –  have  an  equal  chance  of  ending  up in  the  researcher’s

observational  sample.  A  first  experimental  approach  to  follow  up  on  the  many

observational  studies  was  conducted  by  Arndt-Lappe  &  Plag  [2013],  who  had  29

speakers of Irish English write and then pronounce blends in response to 60 written

pairs  of  words;  their  source words systematically  varied syllabic  lengths and stress

placements. They obtained altogether 1357 blend tokens from 107 ordered word pairs

and  largely  corroborate  existing  observational  studies  (mostly  focusing  on  Cannon

[1986],  Kubozono  [1990],  Gries  [2004a-c],  and  Bat-El  &  Cohen  [2006]):  blends  are

typically as long as the longer source word, source words are often, but not always,

split at constituent boundaries, and sw2 determines the stress of the blend more than

sw1.
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In this paper,  we will  also discuss experimentally-obtained blends;  in this first case

study, the focus will be on validating previous observational research.

 

2. Data and methods

2.1. Experimental design

The source words to be used as stimuli came from four distinct semantic domains that

represented plausible scenarios for intentional blending: fruit, vegetables, dog breeds,

and car brands (see Appendix A for  the full  prompts participants were given).  The

specific source words selected for each domain were controlled for syllabic, graphemic

and phonemic length as well as frequency to the best extent possible. Eight mono-, bi-,

and  tri-syllabic  source  words  were  rotated  in  each  participant  form.  Monosyllabic

source  words  had  3-4  graphemes/phonemes;  bisyllabic  source  words  had  5-7

graphemes  and  4-6  phonemes  (with  the  exception  of  kia with  3  graphemes  and

phonemes); and trisyllabic source words had 6-10 graphemes and 6-8 phonemes. The

source words were presented in such a way that once all participants completed the

experiment, mono-, bi-, and trisyllabic source words were blended together an equal

number  of  times.  Source  word  frequencies  were  obtained  from  the  Corpus  of

Contemporary  American  English (COCA),  a  publicly  accessible  corpus  covering  spoken

news reports  and interviews,  fiction writing,  magazines,  newspapers,  and academic

writing. Of the potential source words in each domain, the most frequent and the least

frequent were selected. The resulting list of source words was the following:

• fruit: banana, cantaloupe, cherry, grape, guava, plum

• vegetables: bean, garbanzo, lentil, onion, potato, yam

• dog breeds: chihuahua, lab, mastiff, poodle, pug, retriever

• car brands: dodge, honda, jeep, kia, mercedes, pontiac

To avoid potential priming effects, source words were never presented twice in a row

as stimuli. Each participant saw an experimental form that contained 30 pairs of source

words (15 pairs each from two out of the four semantic domains) and 30 filler items

that  served to  shift  participants’  attention from the  blending task  to  a  sufficiently

dissimilar  task.  The  filler  items  were  simple  math  problems  such  as  divisions  and

multiplications,  rounding of  numbers,  and fractions.  12  unique  experimental  forms

were created so that in a group of 12 participants, two participants saw source word

pairs from the same two domains, yet in different order of presentation of sw1 and sw2.

 

2.2. Procedure

All experiments took place in the laboratory of Stefanie Wulff and were approved by

the University’s Internal Review Board. All participants were college students enrolled

at Stefanie Wulff’s university, and all were native English speakers between the ages of

18 and 25. A research assistant walked participants through the informed consent form

and  a  participant  information  form  that  asked  for  personal  information  such  as

language  background,  age,  and  sex.  Participants  were  then  seated  in  front  of  a

computer screen for the experiment. The experiment was conducted in two rounds. In

Experiment 1 (E1), participants were presented with the stimuli and filler items on the

computer screen and then asked to record their response in writing using pen and
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paper.  In  Experiment  2  (E2),  a  new group of  participants  were  presented  with  the

stimuli and filler items on a computer screen and then asked to articulate the stimulus

or filler item out loud before recording their response in writing, and then to sound out

their  responses  as  well.  To  capture  participants’  oral  productions,  the  entire

experimental session was tape-recorded. 72 students participated in E1, yielding 2,188

blends;  84  students  participated  in  E2,  yielding  2,520  blends  (in  both  experiments,

discarded responses included the participant saying “I don’t know” and repeating one

or both source words without blending them). All written blends were copied into a

spreadsheet,  and all  oral productions of  source words and blends were transcribed

using the CELEX phonetic alphabet [Baayen, Piepenbrock & Gulikers 1995].

 

2.3. Data annotation

Regarding the blend type, we determined for each grapheme/phoneme of the blend

where  its  elements  come  from  (we  henceforth  use  the  terms  grapheme  and  letter

interchangeably). For instance, consider Table 1 for our treatment of the well-known

blend brunch. In this format modeled after Gries [2004c], the first two rows represent

for each of the letters in sw1, breakfast, whether it is in the blend (lower row) or not

(upper row); the then next two rows do the same for sw2,  lunch,  just in the reverse

order, which is so that the middle two rows highlighted in bold comprise the blend. The

resulting annotation for BLENDTYPE is shown in the last row, namely for each letter in

the blend which of the two source words – 1 or 2 – it is from. The current example

highlights how our annotation identifies what is often considered the prototypical kind

of blend – the beginning of sw1 followed by the end of sw2 – namely as a sequence of

one or more 1s followed by a sequence of one or more 2s; in regular expressions, might

one might summarize this as “1+2+”.

 
Table 1: Annotation of BLENDTYPE for breakfast × lunch → brunch

Letter slot 1 2 3 4 5 6 7 8 9

Letters from sw1 in the blend   e a k f a s t

Letters from sw1 in the blend b r        

Letters from sw2 in the blend   u n c h    

Letters from sw2 not in the blend  l        

Annotation for letter BLENDTYPE 1 1 2 2 2 2    

This annotation can be extended to handle the maybe next most prototypical kind of

blend, namely one that, around the point of fusion, involves overlap, i.e. graphemes or

phonemes  that  occur  in  both  source  words,  such  as  the  l in  fool ×  philosopher →
foolosopher. These were marked with a 3, as shown in Table 2 for a blend from our data,

potato × lentil → potatil.

 
Table 2: Annotation of letter BLENDTYPE for potato × lentil → potatil

Letter slot 1 2 3 4 5 6 7   
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Letters from sw1 in the blend      o    

Letters from sw1 in the blend p o t a t     

Letters from sw2 in the blend     t i l   

Letters from sw2 not in the blend  l e n      

Annotation for letter BLENDTYPE 1 1 3 1 3 2 2   

Finally, there was a very small number of blends where the subjects coined a blend on

the basis of the letters, but when they pronounced it, that blend contained a phoneme

that was not represented in either source word, but instead resulted from the subjects

‘making phonemic sense’ of their graphemically-motivated creation; those were coded

as 4; consider Table 3 and Table 4 for the letter and phoneme annotation of the blend

jeep × honda → jenda, respectively.

Additionally, for the oral responses, all source words and blends were also annotated

for stress.

 
Table 3: Annotation of letter BLENDTYPE for jeep × honda → jenda

Letter slot 1 2 3 4 5     

Letters from sw1 in the blend   e p      

Letters from sw1 in the blend j e        

Letters from sw2 in the blend   n d a     

Letters from sw2 not in the blend h o        

Annotation for letter BLENDTYPE 1 1 2 2 2     

 
Table 4: Annotation of phoneme BLENDTYPE for jeep × honda → jenda

Phoneme slot 1 2 3 4 5     

Phonemes from sw1 in the blend  i p       

Phonemes from sw1 in the blend _         

Phonemes from no sw in the blend  e        

Phonemes from sw2 in the blend   n d %     

Phonemes from sw2 not in the blend h Q        

Annotation for phoneme BLENDTYPE 1 4 2 2 2     
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3. Hypothesis 1: the shorter source word contributes
more of itself to the blend

In  this  section,  we  are  revisiting  the  first  hypothesis  from  above,  which  was  first

proposed by Kaunisto [2000] and then studied in, for instance, Gries [2004a-c].

 

3.1. Preparation of the data

In order to test Hypothesis 1, we needed the lengths of the source words in graphemes

and phonemes as  well  as  how much in percent they contributed to the blend.  The

graphemic lengths of the source words were straightforward to obtain from our master

spreadsheet  by  just  counting  the  number  of  characters  for  all  source  words.  The

contributions to the blends required a slightly more elaborate approach based on the

blend  lengths  and  their  types  as  outlined  above  in  Section 2.3.  Based  on  that

annotation, the contribution of

• sw1 to the blend was the number of 1s and 3s in BlendType divided by the length of sw1;

• sw2 to the blend was the number of 1s and 3s in BlendType divided by the length of sw2.

That is, for brunch (recall Table 1), the graphemic contributions of sw1 and sw2 are 2/9

and 4/5 respectively, for potatil (recall Table 2), the graphemic contributions of sw1 and

sw2 are 5/6 and 3/6 respectively, etc.

 

3.2. Statistical analysis

In the existing literature on this hypothesis, the lengths of the source words and their

contributions were expressed in a ternary format. That means, comparisons were made

between the source words of each blend to determine 

• for lengths, whether sw1>sw2, sw1=sw2, or sw1<sw2;

• for  contributions  to  the  blend  as  computed  above,  whether  sw1>sw2 (i.e.,  whether  sw 1

contributed more of itself than sw2), sw1=sw2, or sw1<sw2.

Then, the frequencies for each combination were tallied and subjected to a chi-squared

test  or  a  Poisson  regression.  This  approach  is  simple,  but  quite  defensible  for  the

observational data of previous work. If we apply this method here to the grapheme-

based blends of E1, which we will use to outline our statistical methodology for this

section,  we  get  Table  5.  The  frequency  distribution  is  significantly  different  from

chance (X2=266.51, df=4, p<10-10, V=0.25) and the only positive Pearson residuals are in

precisely  the  highlighted  cells  one  would  expect  from,  say,  Gries  [2004a: 654]:  in

summary, the shorter source word contributes more of itself to the blend and when

both are equally long, they contribute equally much.

 
Table 5: Cross-tabulation of source words’ lengths and contributions: observed frequencies (and
Pearson residuals in parentheses)

Contribution

Length
sw1<sw2 sw1=sw2 sw1>sw2 Totals
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sw1<sw2 436 36 504 (+7.56) 976

sw1=sw2 120 54 (+9.98) 44 218

sw1>sw2 672 (+4.83) 62 260 994

Totals 1228 152 808 2188

However, the assumption of independence of data points that a chi-squared test relies

on was already violated in the observational data. There, that violation was probably

fairly inconsequential because the data comprised only a few blends that share certain

source words; for instance, there were several blends with sex as sw1. But in the present

experimental data, the amount of repeated-measurements structure of this type is of

course much higher: all blends were created from the same set of source words, and

every  speaker  contributed  many  data  points.  Thus,  while  the  above  results  are

suggestive, a better approach is needed.

As an alternative,  we adopted an ordinal  mixed-effects  modeling approach.  For the

dependent  variable  we  first  computed  the  following  contribution  percentage

difference: contribution % sw1 – contribution % sw2. The resulting value ranged from -1

to +1: when it is high, sw1 contributes much more of itself to the blend than sw2; when it

is low, sw1 contributes much less of itself to the blend than sw2; and when it is 0 or close

to 0, both source words contribute about equally much. However, this set of values is

very diverse (200 difference values with some less than 0.001 apart), many of them are

only  minimally  different  while  at  the  same  time  meaning  the  same  thing.  Two

differences of, say, 0.5 and 0.46 both mean sw1 contributes much more than sw2 – we do

not need a linear regression to try to ‘explain’ that difference of 0.04 and would in fact

not have much of a theoretical account at the level of quantitative resolution. Thus, we

converted the difference values into a more useful ordinal response variable such that

• if -1 < difference < -0.25, the response variable was set to “sw2 contributes more”;

• if -0.25 ≤ difference ≤ 0.25, the response variable was set to “both contribute equally”;

• if 0.25 < difference < 1, the response variable was set to “sw1 contributes more”.

This response variable was then modeled as a function of each source word’s length

(each as an orthogonal polynomial to the second degree to allow for curvature) and

their interaction. As for the random effect structure, the only one that did not cause

modeling problems consisted of varying intercepts for both sw1 and sw2 – additional

varying intercepts for subjects exhibited very little variance in initial simple models

and led to convergence problems with the fixed effects mentioned above.

 

3.3. Results

The  above  model  provides  for  a  highly  significant  fit  to  the  data  (LRT=94.84,  df=8, 

p<10-15),  with  the  interaction  of  the  two  polynomials  being  significant  as  well

(LRT=70.94, df=4, p<10-13), allowing for no obvious simplification to the model. However,

the strength of the effect is small: Nagelkerke’s R2=0.05. While a higher R2 would have

been desirable,  the smallness  of the value is  not  really  surprising given that  blend

production is affected by many different and consciously manipulated factors, while we

are testing only a single and very specific hypothesis here. Nevertheless, in order to be
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safe,  we computed two other mixed-effects models – one with the actual difference

values as the response variable (e.g., the above 0.04) and one with a binary response

variable (‘sw2 contributes more’ vs. ‘it does not’). While the numerical results differ,

their implications with regard to Hypothesis 1 do not, which is why we proceed with

our interpretation from what we considered to be the ‘best’ response variable.

Given the nature of our model – an ordinal model with polynomials interacting – its

interpretation on the basis of the numerical results is impossible. We therefore proceed

on the basis of predicted probabilities of the three outcomes, but since we have two

numeric  predictors  and  three  levels  in  our  response  variable,  the  resulting  3-

dimensional  graphs  are  instructive  (and  beautiful),  but  cannot  be  used  in  a  non-

interactive print medium. Instead, we represent the results in two 2-dimensional plots.

Each plot in Figure 1 has the lengths of sw1 on the x-axis and the lengths of sw2 on the

y-axis, and within the coordinate systems we are plotting 1s and 2s (when sw1 or sw2 is

predicted/observed to contribute more of itself respectively) and “=” (when both are

predicted/observed  to  contribute  equally).  In  the  upper  panel,  we  plot  the  results

predicted by the model, with greater font sizes indicating that the predictions are more

confident  (i.e.,  the  predicted  probabilities  are  higher).  In  the  lower  panel,  we  plot

whether for each observed combination of source word lengths, the contribution of sw1

or sw2 was higher (plotting 1s and 2s respectively); empty slots in the lower panel mean

that no such combination of source word lengths was observed in the data (e.g., we had

no situation where both sw1 and sw2 were 7 characters long).

 
Figure 1: Summary of the final model (graphemes, E1): predicted outcomes (upper panel) and
observed outcomes (lower panel) 
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The overall complexity of the model notwithstanding, the results are interpretable and,

in this case, fairly compatible with the simplistic chi-squared analysis, as is particularly

clear from the lower panel: 1s (i.e. cases where sw1 contributes more) and especially big

1s are mostly found in the top left part of the plot, where sw1 is shorter than sw2, and

the situation is the reverse for 2s. While the lower panel does not show any “=”s, it does

show that many of the physically smaller 1s and 2s (i.e., when the distribution of the

data is not clearly biased in favor of 1 or 2) are close to the main diagonal, where both

source words are equally long.

What about Hypothesis 1 for the phonemic contributions of source words in E2? The

result  of  the  initial  exploratory  chi-squared  test  for  the  phonemic  lengths  and

contributions  from  E2  was  extremely  similar  to  that  of  E1:  X2=194.7,  df=4,  p<10-10, 

V=0.1987, with the same three positive residuals only. For the same reasons as above,

however,  we proceeded with the  ordinal  mixed-effects  model  with  the  same fixed-

effects  predictors  (just  for  the  phoneme  data  in  E2)  and  the  same  random-effects

structure (this time, however, varying intercepts per subject could be included in the

model without problems).

This model, too, provides for a highly significant fit to the data (LRT=48.96, df=8, p<10-7),

with the interaction of the two polynomials being significant as well (LRT=28.81, df=4, 

p<10-5), allowing for no obvious simplification to the model; however, the strength of

the effect is even smaller than before: Nagelkerke’s R2=0.022. Again we computed two

other mixed-effects models and again their results led to the same implications with

regard to Hypothesis 1. Consequently, the visualization of the results in Figure 2 is the

same  as  above.  The  model  predictions  in  the  upper  panel  are  not  particularly
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instructive, which is not surprising given the very low R2, but the lower panel is a bit

more informative: there are more and bigger 1s in the top left triangle (where sw1 is

shorter than sw2) and there are more and bigger 2s in the bottom right triangle (where

sw2 is shorter than sw1), which is indeed as expected.

 
Figure 2: Summary of the final model (phonemes, E2): predicted outcomes (upper panel) and
observed outcomes (lower panel)
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In  sum,  the  effects  obtained  from  the  experimental  data  are  in  the  hypothesized

direction – the shorter source word contributes more of itself to the blend – but they

are noticeably weaker than they were in the observational data. In other words, while

the previous results are supported,  the present data also raise the specter that the

convenience-sampling kind of  approach that  accounts  for  part  of  the observational

data appears to amplify certain effects, maybe because the people who identified the

blends unwittingly were more likely to notice formations as blends if they exhibited the

hypothesized structure.

 

4. Hypothesis 2: sw2 determines BLENDSTRESS (more)

4.1. (Additional) Preparation of the data

A first exploration of Hypothesis 2 consisted again of 3-dimensional cross-tabulation,

namely  cross-tabulating  the  four  stress  patterns  of  each  sw1 and  sw 2 (stressed:  S,

stressed-unstressed: SU, stressed-unstressed-unstressed: SUU, and unstressed-stressed-

unstressed: USU) with the stress patterns of the blends provided by the participants in

E2. However, the 12 stress patterns of the blends were quite Zipfian-distributed, which

would be problematic for most kinds of categorical data analyses, which do not usually

respond well to response variable with 12 levels, four of which are attested less than

four times. At the same time, the four most frequent blend stress patterns not only

accounted  for  nearly  91%  of  all  tokens,  but  were  also  exactly  the  stress  patterns

exhibited by the source words. In order to describe the data best, we proceeded to do
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both  analyses.  In  what  we  will  now  call  analysis
1
,  we  created  a  variable

BLENDSTRESSWHENCE, which stated for each blend where it got its stress pattern from; for

that we needed to distinguish four levels:

• a level sw1, if the blend had sw1’s stress pattern, and sw2’s stress pattern was different;

• a level sw2, if the blend had sw2’s stress pattern, and sw1’s stress pattern was different;

• a level sw1sw2 if both sw1 and sw2 had the same stress pattern as the blend;

• a level neither, if the blend had a stress pattern different from sw1 and sw2.

This variable then became the response variable in a first statistical analysis discussed

presently. However, in the other analysis, which we will now call analysis
2
, we ‘reduced’

the data by discarding the ≈9% of cases where the blend had a stress pattern that was

neither that of sw1 nor that of sw2.

 

4.2. Statistical analysis

As  before,  a  3-dimensional  chi-squared  test  or  a  hierarchical  configural  frequency

analysis of either data set would have been possible, but also probably problematic,

given the repeated measures structure in this data set. Therefore, we opted again for a

mixed-effects model,  this time – given our response variables BLENDSTRESSWHENCE (in

analysis
1
) and BLENDSTRESS (in analysis

2
) had four levels – Bayesian multinomial mixed-

effects models. The predictors were SW1STRESS and SW2STRESS as well as their interaction,

the random-effects structure consisted of varying intercepts of each sw1, each sw2, and

each participant; our modeling parameters were four chains each with 2000 iterations

(after  a  burn-in  for  each  of  1000);  these  numbers  may  seem  low,  but  see  the

convergence results below.

 

4.3. Results

The models from both analyses converged just about perfectly (no R-hat values >1.01)

and resulted in quite a good fit and accuracy. While, to the best of our knowledge, R2-

values  for  this  kind  of  model  are  not  available,  the  classification  accuracy  of  both

models are quite good: 61.5% for analysis
1
,  66.7% for analysis

2
,  which according to an

exact binomial test is highly significantly better (p<10-96 and p<10-184 respectively) than

the  baselines  of  40.75%  or  36.8%  (the  frequency  of  the  most  frequent  level  of  the

response variables).

Interpreting the results of such models is more difficult than those of ordinal models: A

multinomial model with an interaction like ours would return four (levels of predictor

1) times four (levels of predictor 2) times four (levels of the dependent variable) = 64

predicted probabilities and/or 64 observed probabilities.  We therefore proceeded as

follows (described here first  for analysis
1
):  First,  for  all  16 combinations of  the four

levels of the two predictor variables SW1STRESS and SW2STRESS, we identified which level

of BLENDSTRESSWHENCE had the highest predicted probability and what that predicted

probability was. These are represented in the upper panel of Figure 3, which shows the

levels of SW1STRESS in the ‘outer’ y-axis and the levels of SW2STRESS nested within those,

with the predicted probability indicated by “×” on the x-axis with a small label on top of

the “×” representing which level of BLENDSTRESSWHENCE is predicted for that combination

of SW1STRESS and SW2STRESS. That means that the second row from the top indicates the
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following: ‘When SW1STRESS is S and SW2STRESS is SU, then the blend is predicted to have

the stress pattern of SW2 (with a probability of >0.7, 0718 to be precise).’ The crosses

and labels are printed in blue when the blend did indeed exhibit the stress pattern of

sw2 or of both sw1 and sw2, and else in red. For analysis
2
, we show the equivalent in the

lower panel of Figure 3.

 
Figure 3: Predicted probabilities of predicted outcomes of BLENDSTRESSWHENCE for all the data

(upper panel) and predicted probabilities of predicted outcomes of BLENDSTRESS for the reduced

data (lower panel) 
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The results are supportive of Hypothesis 2, but maybe not as strong as expected and

maybe with a twist:  Both panels show that,  when SW1STRESS is S,  sw2 – whatever its

stress pattern – determines BLENDSTRESS, and when SW1STRESS is SU, then sw2 determines

BLENDSTRESS unless  sw 2 is  monosyllabic.  However,  when  SW1STRESS is  SUU,  sw 2 only

determines BLENDSTRESS when it also is trisyllabic, and when SW1STRESS is USU, sw2 only

‘co-determines’ BLENDSTRESSWHENCE when it also does in analysis
1
 and only determines

BLENDSTRESS in analysis
2
 when sw2 also is trisyllabic.

While  these  results  support  that,  on  the  whole,  sw2 is  a  stronger  determinant  of

BLENDSTRESS than sw1, part of the results is also compatible with the alternative (if only

at times coincidental) account that the longer source word determines BLENDSTRESS. This

is supported by the observation that trisyllabic sw1s determine BLENDSTRESS more than

shorter sw1s. So, our above result of mostly sw2 determining BLENDSTRESS could be an

artefact resulting from (i)  BLENDSTRESS really being determined by the longer source

word and (ii) the fact that previous studies have shown that sw2 is on average a bit

longer than sw1 (e.g., Kelly [1998], Gries [2004c, 2012]).

We therefore ran three separate models on the analysis
2
 version of the data: They all

featured BLENDSTRESS as the response variable and the same random-effects structure as

above,  but  the first  one had the length difference in phonemes as  a  predictor,  the

second one the length difference in syllables between sw1 and sw2 as a predictor, and

the third one the length difference in syllables as well as SW1STRESS and SW2STRESS and

all  their  interactions  as  predictors.  The  results  were  unambiguous:  All  models

converged but the classification accuracies of the first two did not even reach baseline
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performance; the third model had a good classification accuracy of 67.1% (expectable

since it  featured the same two predictors  that  were already successful  without  the

added length difference), but (i) that classification accuracy is not significantly better

than  the  one  above  for  the  model  without  the  length-difference  predictor

(pbinomial=0.3375) and (ii) a WAIC comparison showed that adding the length difference

and its interaction to the model with ‘just’ SW1STRESS and SW2STRESS did not make the

model  reliably  better  (ELPD  difference  =  -5.6,  but  with  a  standard  error  of  6.2).

Therefore, this case study delivers results that are largely supportive of Hypothesis 2

and, thus, previous analyses based on the observational data. In addition, in our first

multifactorial study of blend stress assignment, we also find that sw2’s dominance, so to

speak, does not seem to be reducible to a length effect and does not benefit from being

augmented with a length effect.

 

5. Hypothesis 3: blending maximizes similarity
between source words and blends

As discussed in much previous work, the similarity of blends to source words can be

measured on a variety of dimensions as, for instance, in terms of stress pattern as in

the previous section. This section focuses on similarity/distance in terms of graphemes

(E1) and phonemes (E2). Here, we can adopt two perspectives:

• similarity can be enhanced by picking two source words to blend that are already more

similar to each other than random words are to each other;

• similarity  can  be  enhanced  by  blending  the  two  source  words  in  such  a  way  that  the

resulting blend retains a high degree of similarity (and, thus, recognizability) to the source

words.

 

5.1. The similarity of source words to each other

The  first  perspective  is  in  fact  requires  observational  data  because  it  can  only  be

studied if one has a wide range of source word-blend combinations to look at. Previous

work has confirmed that source words of blends are more similar to each other than

random word pairs (or source words of complex clippings, for that matter; see Gries

[2006,  2012]).  However,  we  are  also  returning  to  this  briefly  here  even  with  our

experimental source words so as to offer at least an idea of how the source words we

used compare to previous findings.

To do that, we computed pairwise Levenshtein string-edit distances (SEDs) – i.e. the

inverse of similarity – of the source words to each other for

• the blends in our experimental data;

• the blends in the latest version of Gries’s collection of observational data, which was last

discussed in Gries [2012];

• 4708  pairs  of  randomly-chosen  words,  a  number  which  corresponds  to  the  number  of

experimental blends collected in both E1 and E2.

In all  these cases we computed both grapheme- and phoneme-based similarity.  For

instance, the SED for channel and tunnel is 3/7 because one the longer of the two source

words has  seven characters  and one needs three operations to  get  from channel to

tunnel: deleting the c, replacing the h with a t, and replacing the a with a u. Then, we

visually compared their empirical cumulative distributions, which are represented in
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Figure 4. It is plain to see that the string-edit distances of words have relatively similar

medians (of around 0.8 or 0.85 at y=0.5) and similar curves. Somewhat unsurprisingly,

the source words of the blends from the observational data have the lowest distances –

i.e. the highest degrees of similarity – but the reassuring finding is that our stimulus

source words do not already behave very differently (in either direction).

 
Figure 4: Ecdf plots for string-edit distances between words based on graphemes (upper panel) and
phonemes (lower panel)

 

5.2. The similarities of source words to blends

As for the second perspective and to measure how much the blending of the source

words leads to a similar blend, we followed Gries’s [2012] general logic and computed

for each blend an average Levenshtein string-edit distance (ASED) value, which means,

we took the average of the SED between sw1 and the blend and the SED between sw2 and

the blend. For channel × tunnel → chunnel, the ASED is 3/14=0.2143, namely the mean of

the SED of channel and chunnel (1/7) and the SED of tunnel and chunnel (2/7). We did this

for

• all experimental blends of our data, using graphemes for the blends in E1 and phonemes for

those of E2;

• all observational blends of Gries’s [2012] data, using both graphemes and phonemes;

• all blends one could hypothetically generate from 6 pairs of source words (sw1s: strong, rich, 

television, flight, sloppy, Chevrolet; sw2s: powerful, handsome, armchair, suitcase, medical, Cadillac)

while respecting phonotactic rules of English, meaning we did not include a hypothetical

blend rich × handsome → rndsome.

Then we fit a linear model to see how much the ASEDs – the similarity-preserving ways

in which blends are formed from the source words – vary as a function of Medium

(graphemes vs. phonemes), Type (experimental vs. observational vs. hypothetical/simulated)

and the SEDs between the source words. The model revealed a significant three-way

interaction between these predictors (p=0.016), which is represented in Figure 5.
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Figure 5: The effect of SED on ASED for graphemes in the final model (upper panel) and the effect
of Type:Medium on ASED in the final model (lower panel)

The upper panel indicates that for graphemes, all three blend types behave the same:

the more similar the source words are, the more similarly they also are jointly to the

blend. This is reassuring because it confirms previous results based on observational

blends, namely that blend creation involves this kind of using similarity to enhance

word  play  and  recognizability.  At  the  same  time,  it  is  surprising  that  the

mechanistically-created  simulated  blends,  which  by  definition  do  not  heed  to  this,

reveal  the  same  trend.  An  exploration  of  means  does  suggest,  however,  that  as

expected,  the simulated blends scored lower on ASEDs than the other two kinds of

blends.

For the phonemes, the results are reassuring: the experimental blends behave just like

the observational ones, and both are significantly different from the simulated blends.

We did not include confidence intervals to reduce visual clutter, but the 95%-CI for

simulated blends (phonemes) includes 0, reflecting that their similarity to the source

words does not increase even as the source words become more similar to each other.

All in all, we find that previous results based on the observational blends are supported.

While there is one effect we cannot at present account for – the fact that simulated

blends score as high on similarity between source words and blends as experimental

and  observational  blends  –  this  effect  does  not  undermine  the  main  point  of  this

section, namely that the experimental blends pattern like the observational ones from

prior studies.

 

6. Concluding remarks

In sum, the results are first rather encouraging. While many studies, including several

of Stefan Th. Gries, have proceeded using collections of blends that were often accrued

under less-than-ideal sampling conditions, the results of our three case studies join

most of those by Arndt-Lappe & Plag [2013] and lend credence to this kind of previous

work. Section 3 showed that the shorter source word indeed contributes more of itself

to  the  blend  (using  ordinal  mixed-effects  modeling);  Section 4  showed  that  sw2 is

indeed  most  influential  in  determining  blends’  stress  patterns  (using  multinomial
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mixed-effects  modeling);  and  Section 5  showed  that  blending  attempts  to  increase

similarity between source words and blends (using traditional linear modeling).

That being said, we have also seen at least a bit of evidence that the observational data

studied much in the past can, under certain circumstances, impart anticonservative

results in the sense that effects appear stronger in the observational data than in the

more controlled experimental data.  The fear that this might happen motivated this

study in the first place, but then also means that much more such ‘validational work’

needs to be done to determine which other results, if any, were amplified due to the

nature of the observational data.

One other conclusion to be drawn from this study certainly for us is a recognition of

how difficult some of these analyses are even just from a methodological and statistical

perspective.  Even the controlled experimental data required not only an inordinate

amount of transcription and error-checking, but also a data management/processing

and  statistical  approach  that  go  beyond  much  of  mainstream  types  of  analysis  (of

blends, but maybe also in much of linguistics in general). While it is possible to get

some results from simple cross-tabulation and chi-square tests (as in Gries [2012] or

Arndt-Lappe & Plag [2013]), once one wants to go beyond this and adopt the kind of

analyses common in other contemporary corpus- and psycholinguistic studies, things

become complicated very quickly. For instance, our case study of Hypothesis 3 first

generated complete null results until we noticed that the source word similarities must

be included as a control variable – only then did we see the more reasonable results

reported here. Given the multitude of results that still await similar kinds of validation

and the large number of  factors  that  affect  blend formation or at  least  need to be

controlled for, blend researchers certainly have their work cut out for them.
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APPENDIXES

Appendix A. Prompts for the blending task

(1) You are a marketing agent for a fruit snacks company that has just come out with a

series of new fruit snacks that combines flavors of two different fruits. Your job is to

entice people to buy the products by creating clever product names that combine the

two fruits together. Keep the order of the fruits in the name the same as you are given.

Example: peach × apple → papple

(2) You are an agricultural scientist trying to patent new types of vegetables containing

genetic material from two different types of vegetables. Unfortunately, competitors are

also trying to patent the same combinations. You must come up with creative names

for your new vegetables to ensure that the patented names are unique. Keep the order

of the vegetables in the new names the same as you are given.

Example: lettuce × radish → lettish

(3) You are a dog breeder trying to get famous by coming up with the most popular new

breed. You’ve decided to breed several different types of dogs together. For each of the

following pairs, come up with a catchy name for the new type of breed by blending the

names of the two types of dogs together. Keep the type of dogs in the order they are

given.

Example: beagle × husky → busky

(4) For each pair of words you’re given assume you’re in a new merger meeting

between two automobile companies. You’re a marketing agent whose job is to blend the

Improving on observational blends research: regression modeling in the study ...

Lexis, 14 | 2019

20



names of the car brands together in order to come up with a clever new car brand

name. Keep the names in the order that you’re given.

Example: Chevrolet × Cadillac → Chevradillac

ABSTRACTS

In this paper,  we discuss the results of a blend production experiment and how it  relates to

previous research that was nearly exclusively based on observational data. Specifically, we study

three  different  findings  from  published  research,  namely  that  (i)  the  shorter  source  word

contributes more of itself to the blend than the longer source word, (ii) source word2 determines

blend stress (more than source word1), and (iii) blending maximizes similarity between source

words and blends. Using statistical techniques so far not employed in research on blends, we

show that most findings from observational data regarding the three hypotheses studied are

supported, but also occasionally tampered down.

Cet article analyse les résultats d’une étude expérimentale de productions d’amalgames et  la

façon  dont  ils  diffèrent  ou  non  de  ceux  d’études  antérieures  fondées  sur  des  données

d’observation.  Plus  précisément,  nous  analysons  trois  conclusions  tirées  de  recherches  déjà

publiées, à savoir : (i) le mot source le plus court contribue pour une part plus significative à

l’amalgame  que  le  mot  source  plus  long,  (ii)  le  mot  source2  détermine  l’accentuation  de

l’amalgame (plus que le mot source 1),  et (iii)  le processus d’amalgamation tire au maximum

partie de la similarité entre les mots sources et les amalgames produits. Nous avons eu recours à

des  techniques  statistiques  non  employées  jusqu’à  présent  pour  l’étude  du  processus

d’amalgamation,  afin  de  démontrer  que la  plupart  des  conclusions  tirées  des  données

d’observation quant  aux trois  hypothèses  ci-dessus  sont  confirmées,  mais  doivent  également

parfois être modulées.
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