
John Benjamins Publishing Company

This is a contribution from JSLS 5:2
© 2022. John Benjamins Publishing Company

This electronic file may not be altered in any way. The author(s) of this article is/are permitted to use
this PDF file to generate printed copies to be used by way of offprints, for their personal use only.

Permission is granted by the publishers to post this file on a closed server which is accessible only to
members (students and faculty) of the author's/s' institute. It is not permitted to post this PDF on the
internet, or to share it on sites such as Mendeley, ResearchGate, Academia.edu.

Please see our rights policy on https://benjamins.com/content/customers/rights
For any other use of this material prior written permission should be obtained from the publishers or
through the Copyright Clearance Center (for USA: www.copyright.com).

Please contact rights@benjamins.nl or consult our website: www.benjamins.com



What do (most of ) our dispersion measures
measure (most)? Dispersion?

Stefan Th. Gries
University of California, Santa Barbara, USA | JLU Giessen

This paper discusses the degree to which most of the most widely-used
measures of dispersion in corpus linguistics are not particularly valid in the
sense of actually measuring dispersion rather than some amalgam of a lot of
frequency and a little dispersion. The paper demonstrates these issues on
the basis of data from a variety of corpora. I then outline how to design a
dispersion measure that only measures dispersion and show that (i) it
indeed measures information that is different from frequency in an intuitive
way and (ii) has a higher degree of predictive power of lexical decision
times from the MALD database than nearly all other measures in nearly all
corpora tested.

Keywords: dispersion, frequency, association, range, Juilland’s D, Gries’s
DP, generalized additive modeling

1. Introduction

In some way,1 just about any statistic in corpus linguistics is ultimately based on
frequency of occurrence and co-occurrence: We report frequencies of tokens and/
or types per se, we use frequencies to compute dispersion measures (DMs), or we
use co-occurrence frequencies to compute association measures (AMs). For each
of these three dimensions of statistical information, theoretical, cognitive, and
psycholinguistic research has discussed cognitive/psycholinguistic mechanisms
underlying these dimensions. For instance,

https://doi.org/10.1075/jsls.21029.gri | Published online: 30 November 2021
Journal of Second Language Studies 5:2 (2022), pp. 171–205. ISSN 2542-3835 | E‑ISSN 2542-3843
© John Benjamins Publishing Company

1. The beginning of this paper is very similar to that of the previous/sister publication (Gries
2022). This is so that, for readers who only read one of them, each of the two papers is self-
sufficient and, for readers who read both, that they can skim Sections 1 and 2 of this one without
missing anything.

https://doi.org/10.1075/jsls.21029.gri
/exist/apps/journals.benjamins.com/jsls/list/issue/jsls.5.2


– token frequency has been related to matters of (cognitive) entrenchment
(Schmid 2010) and/or baseline activation levels in psycholinguistic models of
the mental lexicon (see discussion by Baayen et al. 2016);

– dispersion has been considered as a proxy towards the commonness of a
word (I am using commonness here as a ‘technical term’ that, while usually
operationalized using frequency, is not the same as frequency, see Savický &
Hlaváčová 2002) and has also been related to recency (e.g., Gries 2019a);

– association has been related to contingency and associative learning in, say,
the Competition Model or in Ellis’s CREED model (e.g. Ellis 2007a, b; Fu &
Li, 2019), but has also played an important role in second language studies or
learner corpus studies as in explorations of collocational knowledge (see Ellis
et al. 2008; Durrant & Schmitt 2009, Bestgen & Granger 2014, or Siyanova-
Chanturia 2015 for examples).

When corpus linguists want to quantify, say, the dispersion of an element in a cor-
pus or the association of two elements in a corpus, they have to choose what types
of dispersion measure (DM) or AM to use simply because for both dispersion
and association many different measures have been proposed (Gries, 2021). For
dispersion, Gries (2008, 2010) reviewed and compared about a dozen or so mea-
sures, for association, Evert (2009) and Pecina (2009) alone reviewed more than
in 80 measures, and for both domains new measures have been proposed since,
which of course raises the issue of which measure(s) to choose.

One of the most central aspects that should feature in any researcher’s deci-
sion for a measure is of course validity, which can be approached from two
important yet complementary perspectives. The first perspective is concerned
with the desideratum that a measure m should really measure what it is intended
to measure; that means a DM should be designed in such a way that it measures
dispersion and an AM should be designed in such a way that it measures asso-
ciation. There are probably few who would disagree with this seemingly trivial
statement, but there is another, complementary aspect to it which is less often
considered: The values of a measure should measure, or ‘react to’, what they are
intended to measure or ‘react to’, but also not measure or ‘react to’ much else, so
that we can take/interpret the computed values at face value (no pun intended).

The second perspective is concerned with the fact that the results of some
such measure should ideally be correlated (well (enough)) with the kind of exter-
nal evidence that the measure is supposed to measure. For example, if a DM is
truly a measure of the degree to which, say, a word in common or widespread use
in a language and if one independently assumes that the dispersion of a word is
related to how quickly one can recognize it in, say, a lexical decision task, it follows
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that a good DM should also correlate with such external data (e.g. experimentally-
obtained reaction times).

Interestingly enough, much work in corpus linguistics using DMs and AMs
has not concerned itself enough with both of these two perspectives (maybe espe-
cially by neglecting the first – often for good reasons, see below – and I have done
so myself too often), which can then also impact the second. Put differently and
to say it out loud, if one’s DM or AM is not and not only measuring what it is sup-
posed to measure, then we are already beginning to fail the most basic test crite-
rion, that of validity and then it’s not a huge surprise that our measure might not
correlate well with the kinds of external evidence we want to correlate it with or
validate it against. As just mentioned, neglecting the first perspective – measuring
what one wants to measure and nothing else – has often been done for probably
just one single reason: simplicity and sortability along one dimension d: we all
like to just click “Sort” and be done with it. If one computes DMs for how evenly
words are distributed across a corpus and the DM conflates or, to put a more pos-
itive spin on it, ‘conveniently integrates’ information from various dimensions –
hopefully with at least one of them being dispersion – then this might be (!) suffi-
cient for a variety of lexicographic, applied, and maybe some descriptive purposes
(and for many of those purposes the second perspective might not be relevant
because, for instance, lexicographers don’t need external psycholinguistic vali-
dation). In fact, sometimes the conflation of measures often returns ‘intuitively
satisfying’ results precisely because the ranking one observes is actually not so
much due to the dimension of information d one says one is using but (more)
due to another dimension. This happens most often when, for example, frequency
‘supports’ the DM/AM m and, thus, makes m return results with a treacherously
high(er) appeal. And that higher post hoc interpretive appeal has often made us
ignore the fact that that appeal is not so much because m is so great and precise
at capturing the dimension d we imply it captures (by its name) and the results
are so great precisely because dimension d is exactly what matters, but because
m actually reflects more than we say it does and it is actually everything that m
uses above and beyond d that makes the results seem so great. More concretely,
we might be calling something a DM and, correspondingly, interpret its results in
terms of dispersion when, figuratively as well as statistically speaking, 2/3 of what
it returns is just re-packaged frequency information, same for AMs. This can even
lead to the treacherous situation that corpus results based on some DM fit exter-
nal evidence well mostly because the particular DM used is actually correlated
more with frequency than with dispersion. In a way, in such a situation, it might
be the fact that we are violating the first perspective (our DM is more determined
by frequency than dispersion effects) that makes the measure seem to pass the
second perspective (its result correlate well with external evidence).
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Again, oftentimes this conflation is not necessarily a problem: Somewhat sim-
plistically, the more descriptive the study, the less of a problem the conflation
of different dimensions causes. However, as soon as the goal is more linguistic,
theoretical, and/or psycholinguistic in nature than the simplest of descriptions,
this kind of threat to validity becomes problematic and then addressing both
perspectives is becoming more and more relevant: With interpretive goals, we
need ‘clean’/precise diagnostic tools (measures) – not ones tainted by conflation –
that we can then maybe also relate to external evidence. And in fact, uncritically
conflating frequency and dispersion can be problematic even in largely descrip-
tive (or prescriptive) contexts such as lexicography (as when adjusted frequencies
make words that are distributed completely differently seem distributed very sim-
ilarly, see Gries 2020: 114 for one example).

In this paper, the second one of a ‘two-paper paper’, I want to discuss the
notion of dispersion and how it is often computed and then used in corpus lin-
guistic. I will focus on what I consider the most widely-used DMs (not that dis-
persion is widely used …) and specifically on the question of how cleanly they
actually measure dispersion and just dispersion. I will argue that nearly all of the
most widely-used DMs are problematic precisely in the sense that they are not
‘clean’: They do not only measure dispersion but also frequency; in fact, they react
more to frequency than they do to true dispersion, and in the sister publication to
this paper, I argued that the same is true of the most widely-used AMs (such as G2,
t, or pFYE).

This study, therefore, pursues the following goals. First and in Section 2, I will
briefly recap an example to show how measures we use may be mislabeled a bit
given that they reflect other things more; specifically, I will very briefly summarize
how the ‘association’ measure G2 seems to actually react more to frequency than
to association or, minimally, conflates association information so much with fre-
quency that the two are very hard to disentangle, which can lead to counterintu-
itive results. Then, Section 3 turns to the main point of the paper, DMs. Section 3.1
quickly surveys the main DMs that have been introduced and illustrate their com-
putation from a term-document matrix. Section 3.2 motivates and defines a new
DM that is by design untainted by frequency; this section uses the same logic
that was employed in the sister publication to define an AM that is by design
untainted by frequency. Section 3.3 then compares this new measure to a vari-
ety of traditional DMs in several corpora and shows that indeed it is much less
correlated with frequency than all traditional DMs. Section 3.4 is a first attempt
to validate the information that this new DM offers: using lexical decision times
from the MALD database, I show that the new measure together with the (now
largely orthogonal!) variable of frequency predicts reaction times better than all
existing measures. Finally, Section 3.5 offers a very brief excursus on the collo-
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cations of fast food and fast bowler discussed in the previous paper on AMs to
show how the new measure can also help in the case of co-occurrence/association
data. Section 4 concludes. In order to make it easier for people to follow along or
apply the logic of this paper to their own work, the exposition below will regularly
provide R code; note, however, that understanding the R code is not required to
understand the paper and readers unfamiliar with R can feel free to gloss over the
code – the code is really only meant as help for readers who might want to write
their own code for the measures discussed or proposed.

2. A brief recap: G2 reacts more to frequency than to association

To illustrate the general nature of the problem – how measures that supposedly
measure dimension d (e.g., dispersion/commonness or association/contingency)
can actually return values that, to large extent, reflect something else – I will very
briefly recap one example from the sister publication to this paper on AMs to
show how the AM called the loglikelihood value or G2 is not really a measure that
delivers a clean association score but rather a measure that reflects mostly fre-
quency and also some association.

How is G2 computed? Most people do so from co-occurrence tables, which
can be schematically represented as in Table 1.

Table 1. Schematic co-occurrence table of a word w and a construction c

Construction: c Construction: other Sum

Word: w a b a+b

Word: other c d c+d

Sum a+c b+d a+b+c+d

Let’s define a hypothetical table of observed corpus results like table.01.obs as
follows:

addmargins(table.01.obs <- matrix(c(50, 950, 350, 9998650), ncol=2,
dimnames=list(WORD=c(“w”, “other”), CONSTRUCTION=c(“c”, “other”))))

##        CONSTRUCTION
## WORD       c   other      Sum
##   w       50     350      400
##   other  950 9998650  9999600
##   Sum   1000 9999000 10000000

For such a 2×2 table, G2 can be computed from the observed and the expected fre-
quencies, as represented in the usual formula here; we will use a small function

What do (most of ) our dispersion measures measure (most)? 175

© 2022. John Benjamins Publishing Company
All rights reserved



G2 (which also permits 0-frequencies that might otherwise cause problems for the
log):

c(“G2”=G2(table.01.obs))
##       G2
## 622.2269

However, the problem with G2 is that it increases quite a bit when all frequencies
of table.01.obs increase even though the ratios of the values in the table do not
change (which of course entails that the actual association between w and c is no
different from before):

addmargins(table.02.obs <- table.01.obs * 10)
##        CONSTRUCTION
## WORD        c    other       Sum
##   w       500     3500      4000
##   other  9500 99986500  99996000
##   Sum   10000 99990000 100000000
c(“G2”=G2(table.02.obs))
##       G2
## 6222.269

Similarly, G2 also increases if only the overall frequency of w or c increases even if
w’s or c’s distribution relative to c and w stay the same:

– in table.03.obs, w is twice as frequent as before, but still distributed with a
1-to-7 ratio over c vs. other;

– in table.04.obs, c is twice as frequent as before, but still distributed with a
1-to-19 ratio over w vs. other;

– yet in both tables, G2 nearly doubles:

addmargins(table.03.obs <- matrix(c(100, 950, 700, 9998250), ncol=2,
dimnames=list(WORD=c(“w”, “other”), CONSTRUCTION=c(“c”, “other”))))

##        CONSTRUCTION
## WORD       c   other      Sum
##   w      100     700      800
##   other  950 9998250  9999200
##   Sum   1050 9998950 10000000
c(“G2”=G2(table.03.obs))
##       G2
## 1239.451
addmargins(table.04.obs <- matrix(c(100, 1900, 300, 9997700), ncol=2,

dimnames=list(WORD=c(“w”, “other”), CONSTRUCTION=c(“c”, “other”))))
##        CONSTRUCTION
## WORD       c   other      Sum
##   w      100     300      400
##   other 1900 9997700  9999600
##   Sum   2000 9998000 10000000
c(“G2”=G2(table.04.obs))
##       G2
## 1258.769
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Importantly, a ‘true’ association-only measure such as the (log) odds ratio does
not behave the same way because it recognizes that (i) what changed is mostly just
the marginal frequencies of w and c and that (ii) the actual association of w and c
is virtually the same in all four tables (note: I am computing the discounted odds
ratio here, i.e. I add 0.5 to each cell before computing the odds ratio in case there
is one or more cells with a frequency of 0):

log(odds.ratio(table.01.obs))
## [1] 7.323585
log(odds.ratio(table.02.obs))
## [1] 7.316393
log(odds.ratio(table.03.obs))
## [1] 7.319296
log(odds.ratio(table.04.obs))
## [1] 7.472703

In addition and more tellingly, the previous study then used a collocational case
study – nouns after the adjective fast in the BNC to show that

– G2-values are very much predictable from logged co-occurrence frequency
(R2 from a generalized additive model was 0.945);

– G2-values are hardly at all predictable from a proper association measure such
as the log odds ratios (R2

GAM was 0.055);
– the association-only score of the log odds ratio was hardly predictable at all

from logged co-occurrence frequency (R2
GAM was 0.0241).

The focus of this paper is twofold: (i) to show that the situation is just as bad for
most DMs, which mostly reflect frequency and not actually dispersion and (ii) to
develop a gold-standard measure for dispersion that measures dispersion and just
dispersion and is not also correlated with frequency already by its very design.

3. Dispersion measure: What do they measure and how?

3.1 Existing measures

Let’s now apply the above logic to DMs and ask what DMs should do and then
see whether that is what they actually do. They should quantify dispersion, the
degree to which an element – usually, a word, but it could of course be any lin-
guistic element – is distributed evenly in a corpus. Simply put, a word W can be
distributed relatively evenly/regularly across the parts of a corpus, or relatively
unevenly/clumpily. Most DMs fall into the interval [0,1] but those DMs form two
classes differing in their orientation: For some, high values mean that words are
distributed evenly, for others, high values mean words are distributed clumpily
(which of course means each DM in the [0,1] interval can easily be transformed
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into the other class, if necessary). For a completely hypothetical, but still instruc-
tive example, consider a corpus with 500 pretty equally-sized parts (such as the
Brown or LOB corpora or the ICE-GB) and a word W with a frequency of 1000
in the corpus as a whole. In such a case, if every corpus file contained 2 instances
of W, this would constitute a completely even distribution, if all 1000 instances of
W occurred in just 1 of the 500 corpus files (maybe even the smallest one), this
would constitute a completely clumpy distribution, and any distribution of W in-
between those two extremes should return a dispersion value somewhere between
0 and 1.

Gries (2008) surveyed a large number of dispersion statistics and adjusted
frequencies and Gries (2010) showed that they fall into four groups (five, if chi-
squared is recognized as a separate group):

– one group that includes Juilland’s D, the probably most widely-used measure;
– one that includes range and Rosengrens’s S;
– one that includes frequency, maxmin, and the standard deviation;
– one that includes Gries’s own DP/DPnorm.

In what follows, I briefly discuss how some of these values are computed on the
basis of a made-up toy example, namely a corpus represented here as a term-
document matrix tdm (because that is the easiest and fastest way to compute the
most widely-used DMs); consider the following tdm summarizing a toy ‘corpus’
with 16 different words (in the rows) and their frequencies in the 5 parts of the
corpus (in the columns) in the cells:

##     p1 p2 p3 p4 p5
## a  1  2  3  4  5
##   b  2  2  2  2  2
##   c  0  0  1  0  0
##   e  1  1  1  1  1
##   g  0  0  1  1  0
##   h  0  0  0  1  1
##   i  1  0  0  0  0
##   m  1  0  0  0  0
##   n  1  1  0  0  0
##   p  1  0  0  0  0
##   q  0  1  0  0  0
##   s  0  1  1  0  0
##   t  0  1  1  1  1
##   u  1  0  0  0  0
##   w  0  1  0  0  0
##   x  0  0  0  0  1

From this tdm, we can easily compute the absolute and relative frequencies of each
word in each part of the corpus and in the complete corpus. For instance, a occurs
15 times in the corpus and 20% of its 15 occurrences are in p3:

rowSums(tdm.abs) # word frequencies
## a b  c  e  g  h  i  m  n  p  q  s  t  u  w  x
## 15 10  1  5  2  2  1  1  2  1  1  2  4  1  1  1
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round(tdm.rel <- prop.table(tdm.abs, 1), 4)
##
##         p1     p2 p3 p4     p5
## a 0.0667 0.1333 0.2000 0.2667 0.3333
##   b 0.2000 0.2000 0.2000 0.2000 0.2000
##   c 0.0000 0.0000 1.0000 0.0000 0.0000
##   e 0.2000 0.2000 0.2000 0.2000 0.2000
##   g 0.0000 0.0000 0.5000 0.5000 0.0000
##   h 0.0000 0.0000 0.0000 0.5000 0.5000
##   i 1.0000 0.0000 0.0000 0.0000 0.0000
##   m 1.0000 0.0000 0.0000 0.0000 0.0000
##   n 0.5000 0.5000 0.0000 0.0000 0.0000
##   p 1.0000 0.0000 0.0000 0.0000 0.0000
##   q 0.0000 1.0000 0.0000 0.0000 0.0000
##   s 0.0000 0.5000 0.5000 0.0000 0.0000
##   t 0.0000 0.2500 0.2500 0.2500 0.2500
##   u 1.0000 0.0000 0.0000 0.0000 0.0000
##   w 0.0000 1.0000 0.0000 0.0000 0.0000
##   x 0.0000 0.0000 0.0000 0.0000 1.0000

We can also compute the (absolute and relative) sizes of the corpus parts: p1 has 9
words, which corresponds to 18% of the 50-word corpus:

(corpus.part.sizes.abs <- colSums(tdm.abs)) # absolute
## p1 p2 p3 p4 p5
##  9 10 10 10 11
(corpus.part.sizes.rel <- colSums(tdm.abs) / sum(tdm.abs)) # relative
##   p1   p2   p3   p4   p5
## 0.18 0.20 0.20 0.20 0.22

The easiest-to-compute DM is range, which answers the question ‘what is the
number/proportion of corpus parts in which a/each word is attested in at least
once?’ or ‘how much of the corpus in parts do you have to look at to see all
instances of the word?’. For instance,

– a is in every corpus part so range is 1: to see all instances of a, you need to
look at 100% of the corpus parts;

– x is just in one corpus part: to see all instances of it, you need to look at only
20% of the corpus parts:

(ranges <- apply(tdm.abs, 1, \(af) sum(af > 0))) / ncol(tdm.abs)
# af = anonymous function
##   a   b   c   e   g   h   i   m   n   p   q   s   t   u   w   x
## 1.0 1.0 0.2 1.0 0.4 0.4 0.2 0.2 0.4 0.2 0.2 0.4 0.8 0.2 0.2 0.2

This measure is very crude because it considers neither the number of times a
word occurs in each corpus part nor, even more importantly, the sizes of the cor-
pus parts. Just on the side, therefore, I would actually like to propose a slightly
modified version of range, namely one that incorporates the sizes of the corpus
parts in which a word is attested to at least some extent: rangewithsize is the sum
of the sizes of the corpus parts in which the word is attested. This answers the
question ‘how much of the corpus have you seen maximally when you saw all
instances of the word?’:

What do (most of ) our dispersion measures measure (most)? 179

© 2022. John Benjamins Publishing Company
All rights reserved



(ranges.withsize <- apply(tdm.rel, 1,
\(af) sum(corpus.part.sizes.rel[af > 0]) ))

##    a    b    c    e    g    h    i    m    n    p    q    s    t
## 1.00 1.00 0.20 1.00 0.40 0.42 0.18 0.18 0.38 0.18 0.20 0.40 0.82
##    u    w    x
## 0.18 0.20 0.22

This measure is already more discriminatory than range because it can distinguish
the dispersion of m and x: each occurs in only one part of the corpus (so their
traditional range values are 0.2) but x’s one occurrence is in a bigger corpus part
than that of m, which is why its rangewithsize value is higher – a simple step but it
already affords the widely-used measure of range more discriminatory power.

Two other simple measures are (i) sdpop, the standard deviation (for the pop-
ulation) of the frequencies of each word in each file, and (ii) varcoeff, the variation
coefficient (i.e. the standard deviation normalized by the mean):

sd.pop <- function (values) { sd(values)*sqrt((length(values)- 1) /
length(values)) }

round(sds <- apply(tdm.abs, 1, sd.pop), 3)
##     a     b     c     e     g     h     i     m     n     p     q
## 1.414 0.000 0.400 0.000 0.490 0.490 0.400 0.400 0.490 0.400 0.400
##     s     t     u     w     x
## 0.490 0.400 0.400 0.400 0.400

round(varcoefs <- sds / apply(tdm.abs, 1, mean), 3)
##     a     b     c     e     g     h     i     m     n     p
## 0.471 0.000 2.000 0.000 1.225 1.225 2.000 2.000 1.225 2.000
##     q     s     t     u     w     x
## 2.000 1.225 0.500 2.000 2.000 2.000

The final more general measure is idf (inverse document frequency, see Spärck
Jones 1972, Robertson 2004), the (here, binary) log of the number of corpus parts
divided by the range:

round(idfs <- log2(ncol(tdm.abs)/ranges), 3)
##     a     b     c     e     g     h     i     m     n     p     q
## 0.000 0.000 2.322 0.000 1.322 1.322 2.322 2.322 1.322 2.322 2.322
##     s     t     u     w     x
## 1.322 0.322 2.322 2.322 2.322

Then, there is a variety of dedicated dispersion measures, and Juilland’s D is the
most widely known one (see Juilland et al. 1970). For the version we consider here,
the one that can handle differently large corpus parts, we first need for each word
how much in percent it makes up of each corpus part. The following shows that
for the first three words; a, for instance, makes up 11.11% of the first corpus part (it
occurs in there once and p1 has 9 words):

head(perc.of.corpus.part.that.is.element <- t(apply(tdm.abs, 1,
\(af) af/corpus.part.sizes.abs)), 3)

##
## p1 p2  p3  p4        p5
## a 0.1111111 0.2 0.3 0.4 0.4545455
##   b 0.2222222 0.2 0.2 0.2 0.1818182
##   c 0.0000000 0.0 0.1 0.0 0.0000000
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With that, we can compute Juilland’s D, which is based on the variation coefficient
of these percentages normalizing for the number of corpus parts:

round(juillandsd <- apply(perc.of.corpus.part.that.is.element, 1,
\(af) 1−((sd.pop(af)/mean(af))/sqrt(ncol(tdm.abs)−1))), 3)

##     a     b     c     e     g     h     i     m     n     p     q
## 0.785 0.968 0.000 0.968 0.388 0.386 0.000 0.000 0.386 0.000 0.000
##     s     t     u     w     x
## 0.388 0.749 0.000 0.000 0.000

Carroll’s (1970) D2 is the normalized entropy of these percentages:

entropy4d2 <- function (distr) {
-sum((temp <- distr[distr > 0]/sum(distr)) * log2(temp)) /
log2(length(distr))

}
round(carrollsd2 <- apply(perc.of.corpus.part.that.is.element, 1,
entropy4d2), 3)
##     a     b     c     e     g     h     i     m     n     p     q
## 0.938 0.999 0.000 0.999 0.431 0.430 0.000 0.000 0.430 0.000 0.000
##     s     t     u     w     x
## 0.431 0.861 0.000 0.000 0.000

Carroll’s (1970) D2 is virtually perfectly (negatively) correlated with the Kullback-
Leibler divergence, which is the relative entropy of how much the distribution of
the occurrences of a word across the files differs from the corpus part sizes; those
values can be normalized to the [0,1] interval as well:

KLD <- function (post.true, prior.theory) {
logs <- log2(post.true/prior.theory); logs[logs==-Inf] <- 0;
return(sum(post.true*logs))

}
round(klds <- apply(tdm.rel, 1, KLD, corpus.part.sizes.rel), 3)
##     a     b     c     e     g     h     i     m     n     p     q
## 0.137 0.003 2.322 0.003 1.322 1.253 2.474 2.474 1.398 2.474 2.322
##     s     t     u     w     x
## 1.322 0.288 2.474 2.322 2.184

round(kldsnorm <- 1–2^(-klds), 3)
##     a     b     c     e     g     h     i     m     n     p     q
## 0.091 0.002 0.800 0.002 0.600 0.580 0.820 0.820 0.621 0.820 0.800
##     s     t     u     w     x
## 0.600 0.181 0.820 0.800 0.780

Rosengren’s (1971) S is based on the relative sizes of the corpus parts and com-
puted as follows:

round(rosengrenss <- apply(tdm.abs, 1, \(af)
(sum(sqrt(af * corpus.part.sizes.rel))^2) / sum(af)), 3)

##     a     b     c     e     g     h     i     m     n     p     q
## 0.950 0.999 0.200 0.999 0.400 0.420 0.180 0.180 0.380 0.180 0.200
##     s     t     u     w     x
## 0.400 0.820 0.180 0.200 0.220

Finally, Gries’s DP (for deviation of proportions) is computed from the difference
between the distribution of the occurrences of a word across the files differs and
the corpus part sizes, with a possible normalization added to make DPnorm fully
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exhaust the interval [0,1] even for corpora with very few parts (for corpora with
many parts, the difference is negligible anyway):

(griessdp <- apply(tdm.rel, 1, \(af) sum(abs(af-corpus.part.sizes.rel))/2))
##    a    b    c    e    g    h    i    m    n    p    q
## 0.18 0.02 0.80 0.02 0.60 0.58 0.82 0.82 0.62 0.82 0.80
##    s    t    u    w    x
## 0.60 0.18 0.82 0.80 0.78

round(griessdpnorm <- griessdp/(1-min(corpus.part.sizes.rel)), 3)
##     a     b     c     e     g     h     i     m     n     p     q
## 0.220 0.024 0.976 0.024 0.732 0.707 1.000 1.000 0.756 1.000 0.976
##     s     t     u     w     x
## 0.732 0.220 1.000 0.976 0.951

If one computes all these measures for all word types of the Brown corpus, one
finds that every one of these DMs is very highly correlated with frequency. The
following are R2-values that quantify how much of the dispersion values of all
words is predictable from just the logged frequency of the words and we can see
that none of the values is < 0.8:

##         VC     JUILLD         SD        KLD     CARRD2        IDF
##     0.8073     0.8074     0.8524     0.8727     0.8729     0.9035
##    KLDNORM   ROSGRENS         DP     DPNORM      RANGE RANGEWSIZE
##     0.9235     0.9440     0.9555     0.9555     0.9619     0.9619

(Incidentally, range and rangewithsize are so highly correlated here because the
parts of Brown are nearly all the same size – in corpora with more varied sizes
such as the BNC that would be different. Also, less well-known or differently-
designed measures like the adjusted frequency measures proposed by Savický &
Hlaváčová (2002), which are not based on the division of the corpus into parts,
are also highly correlated with frequency.) This is clearly reminiscent of how, in
the previous paper on AMs, logged co-occurrence frequency on its own was so
predictive of AMs such as G2 or t that one wonders whether these should even be
called AMs anymore. And the above is not an isolated finding just for the Brown
corpus. We find the same in the ICE-GB:

##         SD         VC     JUILLD        KLD     CARRD2        IDF
##     0.8062     0.8177     0.8184     0.8771     0.8853     0.9075
##    KLDNORM   ROSGRENS RANGEWSIZE      RANGE         DP     DPNORM
##     0.9159     0.9318     0.9471     0.9475     0.9482     0.9482

In other corpora, frequency accounts a little less for the dispersion measures, but
still very well. For the complete BNC, for instance, nearly all R2-values are around
0.8 and higher – only KLD fares at least a bit better (in how it nearly always has a
by far lower correlation with frequency than all other measures):

##        KLD         VC     JUILLD    KLDNORM     CARRD2   ROSGRENS
##     0.6612     0.7884     0.7948     0.8497     0.8767     0.9015
##         SD        IDF         DP     DPNORM RANGEWSIZE      RANGE
##     0.9056     0.9127     0.9243     0.9243     0.9437     0.9507
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Similarly for the BNC Baby, …

##        KLD         VC     JUILLD    KLDNORM     CARRD2   ROSGRENS
##     0.6051     0.7460     0.7533     0.8011     0.8219     0.8443
##         DP     DPNORM        IDF RANGEWSIZE      RANGE         SD
##     0.8571     0.8571     0.8679     0.8911     0.9104     0.9275

and the BNC sampler, …

##        KLD         VC     JUILLD    KLDNORM     CARRD2   ROSGRENS
##     0.6406     0.7428     0.7607     0.8222     0.8248     0.8647
##        IDF         DP     DPNORM RANGEWSIZE         SD      RANGE
##     0.8701     0.8802     0.8802     0.9067     0.9107     0.9210

and the spoken part of the BNC.

##        KLD         VC     JUILLD    KLDNORM     CARRD2   ROSGRENS
##     0.6243     0.8203     0.8262     0.8927     0.8959     0.9198
##         DP     DPNORM        IDF RANGEWSIZE      RANGE         SD
##     0.9236     0.9236     0.9281     0.9465     0.9607     0.9688

There is one additional comment on these observations that merits brief mention,
especially for readers who have seen me discuss dispersion before. It has some-
times been argued that frequency and dispersion measures are highly correlated –
the discussions I have witnessed involved range, Juilland’s D, and Gries’s DP –
and that, therefore, it might suffice to use frequency only (i.e. to not bother with
dispersion at all) or just a simple dispersion measure like range (in spite of the
huge information loss of traditional range). To that, I usually responded by stat-
ing that (i) yes, frequency and dispersion are highly correlated (in Gries 2020, I
myself report an R2 from a GAM of regressing DP on logged frequency of >0.8),
but also that (ii) this correlation between frequency and dispersion is actually
not strong at all when one considers the limited range of frequencies from which
words for psycholinguistic experimentation might be recruited. For example, in
the spoken BNC, the R2 for the correlation between frequency and dispersion for
words with frequencies in the interval [2036, 5838] (i.e. decent pmw frequencies
of 195.6 and 560.8) is a mere 0.086. Thus, my main point in those discussions was
not to argue against a generally high correlation of dispersion and frequency –
that correlation indubitably exists and has been documented in my writing and
elsewhere. Instead, my main point was always that, for a certain range of words,
namely exactly the range that is interesting in much psycholinguistic work, the
two are not so correlated so, if one is interested in controlling for words’ com-
monness, one needs to consider frequency and dispersion because frequency is
not the best proxy for commonness (see, e.g., Adelman et al. 2006; Brysbaert &
New 2009; Baayen 2010; Gries 2010; Brysbaert et al. 2019) and, in that range, fre-
quency does not also cover dispersion well enough.

That being said, the fact remains that, in general, i.e. over all words in a cor-
pus, dispersion values are so highly correlated with (logged) frequency of occur-
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rence that, by analogy to the previous discussion of AMs, one cannot help but
wonder to what degree dispersion values make an additional, useful, yet unique
contribution to frequency values when it comes to operationalizing words’ ‘com-
monness’. And the fact that dispersion is overall so highly related to frequency of
course means that one might also doubt what DMs such as Juilland’s D or Gries’s
DP contribute even within a frequency range where they are less correlated with
frequency: Does the way these DMs are computed make a principally different
contribution only in a certain frequency range? And if the answer was yes, would
it then even make sense to compute dispersion values for all words, even those
outside of that range? And how would one identify the range where frequency
should be augmented with dispersion in the first place? It seems to me what is
needed is something for dispersion that functions like the (logged) odds ratio for
AMs, a gold-standard DM whose computation is by definition unrelated to fre-
quency (perspective 1 from above), and then we need to check what, if anything,
that DM contributes when it is correlated with external data (perspective 2 from
above). The next subsection is devoted to discussing such a new DM and builds
on the logic with which such a measure was developed for AMs in the sister pub-
lication to this one.

3.2 A new measure: Motivation and development

The main insight that triggered a certain unease with existing DMs (including my
own) came from two sources. The first of these is the above-discussed fact that
all main DMs right now are so strongly correlated with frequency that they do
not seem to be ‘clean’ DMs that measure dispersion and not much else. This is a
threat to validity: how can we interpret something in terms of dispersion if our
measure is actually 0.9-correlated with something else (frequency) and we do not
even have a gold standard measure for dispersion in the first place? The analogy
I drew in the first paper on AMs to drive home this point is the following. Read-
ers need to ask themselves the following question: Would they be happy if they
went to a lab to have their blood checked for their cholesterol level, give a sample,
pay the lab, and then be sent an email with the sentence “Your HDL level is x”
but then they find out that the value x they are given is only correlated with their
HDL value with an R2

GAM of 0.1 but it reflects their blood glucose level really well
with an R2

GAM of 0.9? I doubt they would. Yes, that value is also interesting from
a general health perspective – just as frequency is generally interesting for many
(corpus-) linguistic applications – but it’s not quite the same now, is it? So why do
we do that in our own research?

The second impetus to address this actually arose for me from an example
that I have often used to explain the need to not just consider the frequency of
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words as a proxy for their commonness but also their dispersion. In the Brown
corpus, the two words enormous and staining have the same frequency of occur-
rence of 37 instances, but they have very different ranges: the 37 instances of enor-
mous are in 36 different parts whereas the 37 instances of staining are in 1 part
only. 2 Intuitively, this would mean one should expect massive differences in DMs
because enormous is nearly as perfectly evenly distributed as a word with a fre-
quency of 37 can be while staining is nearly as perfectly clumpily distributed as a
word with that frequency can be – but many measures do not reflect that at all, as
is shown in Table 2 (with the words croaked and the added for comparison)

Table 2. Some dispersion values for four words in the Brown corpus

range rangewithsize sd
Rosengren’s

S KLDnorm DP DPnorm

enormous     0.072      0.07201 0.27 0.072 0.93    0.92799       0.92977

staining     0.002    0.002 1.65 0.002 0.99    0.99800       0.99992

croaked     0.002     0.0019 0.04 0.002 0.99 0.99 1

the 1 1 34.4 0.985 0.03  0.094    0.095

For instance, given that range/rangewithsize can range from 0 to 1, from a
strictly dispersion-based point of view (!), it seems ‘weird’ that a word like enor-
mous, which is about as evenly dispersed as a word with that frequency can be,
scores values that are close to the theoretical minimum; the same is true for
Rosengren’s S, the DP-measures, and KLDnorm (although these measures have the
reverse orientation). If enormous could talk, it would say to a researcher that
quantifies its dispersion with, say, any of these measures, “You say you’re looking
to quantify dispersion, but you’re giving me a low value mostly because of my low
frequency because, let’s face it, given my 37 occurrences, how could I possibly be
more evenly dispersed?”. For sd, it’s nearly worse: The value for the, easily one of
the most evenly distributed words in the English language, is very high, ok, but
staining scores a little bit higher than enormous as if it was more evenly distrib-
uted than enormous, which it, clearly, is not. Now, one might say that enormous
is evenly distributed, it’s just not frequent enough (!) to show up in many corpus
parts and that’s why it is ranked as it is, with a dispersion value in the clumpi-
est decile. But that is the problem, because now we are again using the notion of

2. Brysbaert & New 2009:985 discuss the similar case of creasy and measly, both of which
occur 63 times in SUBTLEXUS, but creasy’s occurrence are all in one corpus part whereas
measly’s are spread out over 59 parts; similarly, see Oakes & Farrow 2007:91 for discussion of
an example similar to staining in Brown, namely thalidomide in FLOB.
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frequency to ‘excuse’/motivate a somewhat counterintuitive dispersion result. We
would in essence be saying “enormous is not frequent (!) enough to score a dis-
persion value that recognizes its nearly maximally even dispersion”. It is of course
every researcher’s right to say, “I want my measure m to reflect a little bit of disper-
sion and a lot of frequency”, but then that researcher – most of us at this point –
must answer the criticism that, if that is what their m does, calling it a DM is
less than intuitive because it amounts to sneaking in a variable (frequency) into
our analysis/discussion of a measure that, if it was ‘clean’, would actually measure
something else (here, dispersion – in the previous paper, association). And in cor-
pus linguistics, we have a history of doing that, we use that strategy all the time
(because all our DMs are so extremely strongly correlated with frequency and
because many of our AMs are, too). What we need is a way to measure dispersion
that is not automatically dominated by, and thus correlated with, frequency, and
we need that for two related reasons:

First, such a measure should look at staining and at croaked and conclude
that, given their frequencies, they are as clumpily dispersed as they can possibly be,
and such a measure would look at enormous and conclude that, yes, it is not that
frequent, but since I am claiming I want to measure dispersion, not frequency,
given its frequency, it is about as evenly dispersed as it can be. The “given your
frequency” is what holds frequency constant and, thus, assesses dispersion sepa-
rately. (And ideally, such a measure would not be as primitive as range and quan-
tify clumpy/even dispersion only on the basis of whether a word shows up in
some corpus part at all, but would also use how often it does and how big the cor-
pus parts are.)

Second, and this is an even more fundamental point: if one’s dispersion mea-
sure is so highly correlated with frequency (with R2s in excess of 0.8), then one
will never be able to find words for different combinations of frequency and dis-
persion values. If frequency and dispersion are as highly correlated as they are, we
will by definition not be able to find high-frequency-and-high-dispersion words,
high-frequency-and-low-dispersion words, low-frequency-and-high-dispersion
words, and low-frequency-and-low-dispersion words, because if a word is of low
frequency, nearly all existing measures ‘condemn’ it to also be low dispersion,
hence the mismatch between enormous’s dispersion values and our recognition
that, given its frequency, it could hardly be more evenly distributed.

In what follows, I outline such a measure, which will be based on DP and
hence be called DPnofreq (but it would not have to be: other bases are possible and
I am using DP because it includes more information than range yet is extremely
fast to compute). For a word w, it is computed in four steps, which are concep-
tually very similar to how the gold-standard AM was computed in the previous
paper.
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First, we compute the regular observed DP-value for w as before; Table 2
above lists them as 0.92799 and 0.998 for enormous and staining respectively.

Second, we compute the highest DP-value that any word with that frequency
can have, i.e. the DP-value that represents the clumpiest distribution possible.
That value is also extremely easy to compute because it is the DP-value that results
from the hypothetical scenario that all occurrences of w are in the smallest cor-
pus part or file. That hypothetical DP-value I will refer to as upp, because it is the
upper DP limit for a word with this frequency; that value here is 0.9981.

Third, we compute the lowest DP-value (called low) any word with that fre-
quency can have, i.e. the value that would result from the most even distribution
for a word with that frequency, which is more complex. The most even distribu-
tion is one where the occurrences of w are distributed according to the file sizes as
much as possible. While this sounds simple enough, it is actually a complex issue
with three possible strategies to consider.

As for strategy 1: With truly incredible computational resources, it would the-
oretically be possible to generate all possible ways in which the n occurrences of
w are distributed over all corpus parts so that one could compute the DP-values
for each of them and identify the low as the smallest theoretically possible value
called low. However, with even the smallest corpora, this is already impossible to
compute: Even if one just wants to compute this for a word like a with 15 occur-
rences in our small toy corpus with 5 parts, the resulting simplex lattice (generated
with combinat::xsimplex) has 3876 rows (because there are that many ways to dis-
tributed a mere 15 tokens over a mere 5 corpus parts) and the minimal DP-value
that is returned by this combinatorics approach is 0.02. However, the computa-
tion of all ways in which a mere 10 occurrences of a word can be distributed over
just 100 files requires > 31,500 GB (that is not a typo); thus this theoretical ideal of
an approach awaits quantum computing.

As for strategy 2: There is a seemingly convenient heuristic to solve this prob-
lem, which is to randomly distribute the occurrences of w over the corpus parts
such that the sampling is biased by the sizes of the corpus parts, and we do so a
certain number of times (e.g. 250 (or 500 or 1000 …) times). That way, we have
250 versions of what the data could look like if the occurrences of w were pretty
much distributed as the sample sizes would makes us expect. Here is what this
would look like if we distribute the 15 occurrences of a over the 5 corpus parts 9
times randomly but weighted by corpus part size:

##                  CORPUSPARTS
## SAMPLINGITERATION p1 p2 p3 p4 p5
##                 1  2  2  6  4  1
##                 2  3  4  2  4  2
##                 3  4  5  1  3  2
##                 4  1  3  5  1  5
##                 5  4  2  1  2  6
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##                 6  2  4  1  5  3
##                 7  5  1  1  3  5
##                 8  2  5  4  2  2
##                 9  3  2  2  5  3

Then we can compute DP for each of these independently sampled rows and find
the lowest DP-value:

## [1] 0.1533333

For the 37 occurrences of enormous or staining in the Brown corpus of 500 very
similarly-sized files, the minimal DP-value obtained like this is much higher,
namely 0.9253413. Crucially, this needs to be done once for every single observed
word frequency, because we need to know low for each of them; this is not compu-
tationally complex, does not really require a lot of RAM, and can be parallelized,
but it does increase computing time once corpora have more different word fre-
quencies and more different parts:

– the Brown corpus contains ≈1m word tokens words that occur with 545 dif-
ferent frequencies across 500 parts and this simulation step took 50 seconds
on a single thread;

– the spoken component of the BNC contains ≈10m word tokens words that
occur with 1555 different frequencies across ≈900 parts and this simulation
step took 900 seconds on a single thread;

– the complete BNC contains ≈100m word tokens words that occur with ≈5400
different frequencies across ≈4000 parts and this simulation step took 1515
seconds on 20 threads.

One potential problem with this approach is, therefore, the amount of time it
would take for even something like the 10m words of the spoken part of the BNC,
but the bigger problem is that, with rare words, but also in general, it is quite
possible that none of the random samples hits on the truly most even distribu-
tion possible or one that is so close to the most even distribution that the compu-
tations resulting from it make no practical difference. In the above example, for
instance, given the corpus part sizes of {0.18, 0.2, 0.2, 0.2, 0.22}, the most even
distribution of a’s 15 instances would be {3, 3, 3, 3, 3}, which would lead to a min-
imal DP-value of 0.02 (as we saw in the combinatorics approach), but the above
simulation example with only 9 iterations returns a minimal DP-value (i.e. low) of
0.1533, meaning it does not even come close to finding the right result. Of course,
this is because 9 is a ridiculously small sampling number, but the more worrisome
finding is that in this example, the really lowest possible DP-value is found only
after at least 148 iterations (with the random number seed I used). Thus, the sim-
ulation approach helps if the number of iterations is high, but the ideal number of
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iterations is unknowable and higher numbers aggravate the first problem, namely
how resource-intensive this approach is.

As far as I can see, the following, third strategy is best. It consists of deriving
the most even distribution in a ‘bottom-up’ stepwise fashion. Imagine you have a
word w that occurs three times in a corpus with only four parts, which have the
following sizes (in a numeric vector called sizes):

## part1 part2 part3 part4
##   0.1   0.2   0.3   0.4

The algorithm generates a vector called hypothetical of zeros, one for each corpus
part, and puts the first occurrence of w into the largest corpus part, leading to this
distribution:

## part1 part2 part3 part4
##     0     0     0 1

Then, the algorithm performs the part of the DP computation that registers the
differences between the observed distribution of w relative to w’s frequency and
the corpus part sizes:

(hypothetical/word.freq) – sizes
##       part1       part2 part3 part4
## −0.10000000 −0.20000000 −0.30000000 −0.06666667

Clearly, the corpus part with the smallest value – part 3 – is the one in which w is
currently most underrepresented so that part receives the next instance of w; thus,
hypothetical changes to this:

hypothetical[3] <- 1; hypothetical
## part1 part2 part3 part4
##     0     0 1 1

Then, the algorithm iterates again:

(hypothetical/word.freq) – sizes
##       part1 part2 part3       part4
## −0.10000000 −0.20000000 0.03333333 −0.06666667

Now, the corpus part in which w is currently most underrepresented is part 2,
which correspondingly receives the next instance of w, which is also the last
instance of w we have to allocate (because our small didactic example stipulated a
corpus frequency of w of 3):

hypothetical[2] <- 1; hypothetical
## part1 part2 part3 part4
##     0 1 1     1

This leads to a DP-value of 1/6:
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sum(abs(hypothetical/sum(hypothetical)-sizes))/2
## [1] 0.1666667

Once easily check combinatorially that this is indeed the smallest DP-value possi-
ble when one has to distribute three instances of w over four corpus part with the
sizes from above:

prop.table(t(combinat::xsimplex(p=4, n=3)), 1)         |>
apply(1, \(af) sum(abs(af – c(0.1, 0.2, 0.3, 0.4)))/2) |>
min()
## [1] 0.1666667

The even better news is, if we apply the same logic to the word a on our above
toy corpus of 50 words, this method retrieves the value of 0.02 we know from our
combinatorics approach to be the right one, but is also extremely fast. Thus, this
is the method we will use here.

Once the observed value, upp, and low have been computed, the fourth and
final step is then, for each word, to

– create a 3-element vector consisting of its theoretical low value, its theoretical
upp value, and the observed DP-value;

– transform that vector into the [0,1] interval such that
– the smallest value of the 3-element vector (likely low) becomes 0;
– the largest value of the 3-element vector (likely upp) becomes 1;
– the last value of the 3-element vector (the observed DP-value) becomes

whatever corresponds to its proportional position in the [0, 1] interval.

Here are some examples of what this 0–1 transformation does in some fictitious
scenarios.

zero.to.one <- function (x) { (y <- x – min(x))/max(y) }
zero.to.one(c(low=0.2, upp=0.9, obs=0.55))
## low upp obs
## 0.0 1.0 0.5
zero.to.one(c(low=0.4, upp=0.9, obs=0.4))
## low upp obs
##   0   1 0
zero.to.one(c(low=0.4, upp=0.9, obs=0.8))
## low upp obs
## 0.0 1.0 0.8
zero.to.one(c(low=0.8, upp=0.9, obs=0.88))
## low upp obs
## 0.0 1.0 0.8

The last value of each transformed 3-element vector is the new dispersion-
without-frequency metric for a word. For enormous and staining, this measure
DPnofreq returns the desired very nice results:
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– for the very evenly distributed enormous, a value close to the maximally-even
threshold of 0, namely 0.03638, and this value would be even smaller if, for
instance, 2 of the 37 instances were not in the same file;

– for the very clumpily distributed staining, this measure returns a value close to
the maximally-clumpy threshold of 1, namely 0.99886, and this value would
be even higher if the 37 instances were clumped together not in the file in
which they are but in a smaller file.

This measure, I propose, is what the (logged) odds ratio is for association, namely
a gold-standard value that reflects dispersion and only dispersion, because its
computation involves for every word w a normalization based on the possible
range of DP-values for exactly w’s frequency of occurrence.3 That also means that,
since high frequencies are not required for DPnofreq to recognize even dispersion,
DPnofreq can now do something that nearly no other DM can do, namely recog-
nize low-frequency-but-high-dispersion words (like enormous).

Let us now evaluate this measure from the two perspectives outlined at the
beginning.

3.3 Perspective 1: DPnofreq measures dispersion, not frequency

First, we compare correlations of DPnofreq, logged word frequency, and other
DMs (in several corpora) with a series of plots, which require some explanation.
Figure 1 compares how much range is correlated with, and hence already pre-

3. Of course, if frequencies and DPnofreq are computed for all words in a corpus, they could
theoretically still be correlated, but, counter to what one reviewer asked, this is not a contradic-
tion of the above. This is because there are at least two potential reasons for why two variables
x and y (like, here, frequency and dispersion) might be correlated: (i) There could be a cor-
relation because one measures x in such a way that the measurement of x already includes, or
is contaminated with, y, meaning the correlation between x and y is not an empirical finding
that might even be surprising, but a design feature of how they are measured: No one would be
surprised that people’s heights measured in inches and people’s heights measured in centime-
ters are correlated and that would not be an empirical finding. (ii) There could be a correlation
because even though x and y are measured in completely independent ways, the constructs they
represent are correlated: At the risk of great simplification, the positive correlation between IQ
and income (as, e.g. reported in Zagorsky 2007) is not due to IQ being measured in a way that
already statistically includes income (or vice versa), it reflects something else (whatever that is,
obviously correlation does not equal causation and obviously income is a function of multiple
things). Thus, frequency and DPnofreq could still be correlated, but then that would be an inter-
esting empirical finding rather than a trivial mathematical consequence of how dispersion was
measured.
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dictable from, logged word frequency in the spoken part of the BNC and Figure 2
does the same for DPnofreq. In these two plots,

– each word type is a point at the coordinates of its frequency and dispersion
value;

– the red lines are regression lines from GAMs with the R2 of the GAM indi-
cated in the plot; remember that, for range, high values indicate even disper-
sion whereas for DPnofreq, low values indicate even dispersion;

– the green ‘error bars’ indicate the ranges of observed dispersion values in
each of 10 equally-spaced frequency bins (with the actual numerical range of
dispersion values per bin indicated at the top of the plot). That means, for
instance, that the range values for words with a frequency of around 26 (the
4th green bar from the left) only differ by about maximally 0.218 whereas
the DPnofreq values for words with that same frequency differ by about 0.619,
which in turn means that frequency narrows down range immensely, but not
DPnofreq: as desired, DPnofreq is able to quantify dispersion much more inde-
pendently of word frequency;

– the blue line is the cumulative frequency of the word frequencies (same in
both panels). That means, for instance, that 85% of all words have a frequency
of ≤25=32.

In every way, these two plots already show that range is fairly clearly determined
already by frequency – another way of saying this would be that range does not
add much information to whatever frequency already provides – whereas DPnofreq
is much more independent.

However, the most compelling (though admittedly not intuitive) indication of
that is Figure 3, which shows on the y-axis how many of all the word types are in
frequency bins with a dispersion range for each DM (R for range, D for DPnofreq).
For instance, the upper arrow indicates that 80% of all word types in the corpus
are in a frequency bin that has a range of range values of a mere 0.022, meaning
80% of all word types in the corpus are in a frequency bin where the word type’s
frequency already nearly perfectly determines its range value. The lower arrow, by
contrast, indicates that nearly 60% of all word types in the corpus are in a fre-
quency bin that has a range of DPnofreq values of ≥0.68, meaning nearly 60% of all
word types in the corpus are in a frequency bin where the word type’s frequency
does not predict the word types’ DPnofreq values well at all – because we are now
truly measuring dispersion independently of frequency.

Space does not permit a similarly detailed representation of the results for
other corpora tested here; the results for Brown (comparing DPnofreq to Rosen-
gren’s S), the ICE-GB (comparing DPnofreq to DP), BNC Baby (comparing DPnofreq

192 Stefan Th. Gries

© 2022. John Benjamins Publishing Company
All rights reserved



Figure 1. Evaluating range against logged frequency in the BNC spoken

to IDF), BNC sampler (comparing DPnofreq to the variation coefficient), and the
complete BNC (comparing DPnofreq to Juilland’s D) are, however, conceptually
very similar and available as an online supplement at <http://www.stgries.info
/research/2022_STG_DispNoFreq_JSLS.zip>.

Table 3 summarizes the correlations/comparisons across measures and cor-
pora. While there are obvious quantitative differences, the overall picture is clear:
Across a range of corpora and in comparisons with different DMs, we always
find that the traditional DMs are all very much correlated with word frequency
whereas DPnofreq is much less so. More importantly, recall from note 3 that even
though the correlations between logged frequency and DPnofreq are still notable,
the critical thing is that these correlations are not a design feature of the measure
as in most DMs but an actual empirical finding: more frequent words are more
likely to be more evenly dispersed even if one’s definition of dispersion explicitly
discards frequency. We also see that for most traditional DMs, when frequency is
low, the range of DM-values is very small precisely because these DMs are largely
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Figure 2. Evaluating DPnofreq against range in the BNC spoken

‘determined’ or contaminated by frequency already, but in panel after panel we
also see that even with very low frequencies, DPnofreq can be large or small.

Table 3. R2
GAM for various DMs and DPnofreq across several corpora

Corpus Traditional DM Traditional DM ~ freq DPnofreq ~ freq

BNC spoken range R2
GAM=0.9607 R2

GAM=0.3111

Brown Rosengren’s S R2
GAM=0.944 R2

GAM=0.5758

ICE-GB DP R2
GAM=0.9482 R2

GAM=0.5971

BNC Juilland’s D R2
GAM=0.7948 R2

GAM=0.27

BNC Baby IDF R2
GAM=0.8679 R2

GAM=0.3966

BNC Sampler VarCoeff R2
GAM=0.7428 R2

GAM=0.2755
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Figure 3. Evaluating DPnofreq (against range in the BNC spoken)

Scatterplots and GAM fits (also in the online supplement) of each dispersion
measure against DPnofreq also show that, while each of the tested traditional DMs
is very much predictable from frequency, none of them is predictable well and/or
linearly from DPnofreq although that is what those are thought to measure.

Now that we have established that DPnofreq as defined here is different from
all other DMs in how it does not most reflect frequency already by design, let us
address perspective 2 – the correlation with external evidence – and determine
how well it complements frequency as a predictor of lexical decision task reaction
times compared to the traditional measures that conflate frequency and disper-
sion in a single value.

3.4 Perspective 2: DPnofreq helps predicting external data

The question that remains is whether the new measure’s main feature – its much
greater independence from frequency compared to existing measures – does now
also lead to at least some higher degree of predictive power when applied to exter-
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nal data. In the past (e.g. Gries 2010, 2019a), I showed that the measure DP, which
I proposed in Gries (2008), has a higher degree of predictive power in monofac-
torial correlations with two small reaction time (RT) data sets (Spieler & Balota
1997, Balota & Spieler 1998, and Baayen 2008) than most traditional measures.
Similar results were obtained by both Adelman et al. (2006) and Brysbaert & New
(2009), who showed that range predicted word processing times better than fre-
quency. Baayen (2010), too, shows that range is a better predictor of word process-
ing times and that frequency as a mere repetition counter – i.e. exactly the way
that most linguists and psycholinguists in general and cognitive linguists in par-
ticular have been endorsing frequency as a causal mechanism – is in fact epiphe-
nomal!4

However, by now, I find my approach there to be less than ideal because the
DP measure(s) I proposed back then suffer(s) from the same problem as just
about all others, namely that its very high correlation with frequency makes one
wonder how much it really contributes above and beyond frequency; the results
reported above in Section 3.1 suggest that, if anything, it is the KLD measure that
is least correlated with frequency. In addition, the data set studied then was small
and did not control for any other predictors (in particular word length). This sec-
tion aims at putting the new measure DPnofreq, but of course also the others, to a
better test, which will be described now.

The RTs I will explore here are from the Massive Auditory Lexical Decision
(MALD) database (Tucker et al. 2019). For the purposes of the study here, I
retained only the RTs and lengths of all 227,179 word tokens and then merged
these data with the words from each of the corpora such that a function would
look at each word type in a corpus, check whether there are RT and length values
for it in the MALD database and, if so, would add those to the dataframe with the

4. Unfortunately and unlike Baayen, Adelman et al. (2006) and Brysbaert & New (2009) do
not establish a connection to corpus-linguistic measures of dispersion in their work and use the
slightly confusing name contextual diversity for range, when in fact the use of a word in different
corpus parts by no means implies that the actual contexts of the word are different: No matter
in how many different corpus parts hermetically is used, it will probably nearly always be fol-
lowed by sealed. Yes, one could argue that they are using context as meaning ‘document’ or ‘text’,
but (i) that is still not particularly intuitive (in linguistics (rather than information retrieval)
we don’t usually consider a word’s context to be the whole text in which it appears) and (ii)
that term makes the connection to range and dispersion even more opaque. Even in Brysbaert
et al. (2019), the potential role of dispersion is not recognized, neither just as the proper term
for what they are using nor as a predictor in the regression models (although my own analy-
sis shows that DP and KLD are not insubstantially correlated with their prevalence scores). It
seems, sadly, that the recognition of dispersion in psycholinguistics outside of Baayen’s work
will require a few more decades …
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corpus frequencies and dispersions. Table 4 summarizes the number of RT tokens
available for correlating it with (logged) frequency and/or dispersion.

Table 4. Numbers of word types used for testing DMs’ predictive power

BNC Baby BNC sampler BNC spoken BNC (total) Brown ICE-GB

93,708 80,146 89,394 111,975 91,110 68,886

The analytical method used here is based on the logic of proportional reduc-
tion of error (PRE) measures and involved the following steps (here described
for the BNC Baby). First, I used a random forest to model the words’ RTs as a
function of their lengths; I used a random forest rather than some sort of regres-
sion model because random forests often have higher prediction accuracies than
regression models, their prediction are already OOB predictions and, thus, ‘cross-
validated’, and random forests are better at detecting non-linearities than most
regression models. I then computed the residuals (observed RTs minus the ran-
dom forest’s predictions), and the median absolute deviation (MAD) of these
residuals was considered the baseline, i.e. an overall amount of variability in RTs
out of which word length has already been ‘partialed out’; that MAD corresponds
roughly to what in a regression modeling context might be the null deviance.

Second, I fit 27 different forests on the RTs with different predictors from the
BNC Baby data: Each forest predicted the RT data based on length (just like the
one used for the baseline) plus one or two additional predictors that are listed
below:

– freq and freqlog;
– range and range + freqlog;
– rangewithsize and rangewithsize + freqlog;
– maxmin and sd and chisq;
– vc and vc + freqlog;
– idf and idf + freqlog;
– juilld and juilld + freqlog;
– rosgrens and rosgrens + freqlog;
– carrd2 and carrd2 + freqlog;
– kld and kldnorm and kldnorm + freqlog;
– dp and dpnorm;
– dpnofreq and freq + dpnofreq and freqlog + dpnofreq.5

5. As a reminder: freq: raw observed frequency; freqlog: frequency logged to the base of 2;
range: range; rangewithsize: rangewithsize; maxmin: the difference between the largest and
the smallest frequency of a word in a corpus part; sd: standard deviation; chisq: chi-squared
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The main point to recognize here is that each DM – the traditional ones and
DPnofreq – is used as a predictor together with length and with two versions of fre-
quency (the raw one and the logged one) so we can see which DM adds most pre-
dictive power to the baseline forest based on length alone.

Third, from each of these 27 random forests I computed (i) the predicted RTs
for the data, (ii) the residuals of these predictions (i.e. how much they differed
from the actually observed RTs), and then (iii) the MAD of these residuals in
exactly the same way as before.

The fourth and final step then consisted of (i) computing the difference
between the rt~length MAD baseline on the one hand and the MAD baseline of
each of the 27 random forests on the others and (ii) expressing the improvement
as a proportion of the rt~length MAD baseline (hence, “proportional reduc-
tion of error”). One can then sort the forests with their predictors to see which
forest(s), and thus, which DM(s), result(s) in the highest improvement/reduction
of the deviance.

From a very global perspective, the results are encouraging for the new mea-
sure. Figure 4 below shows the median PRE relative to a length-only baseline of all
forests across all corpora, crucially, we see at the top that the forests that use length
(as the obvious baseline) and then the combination of frequency (or logged fre-
quency) and the new dispersion measure do best; it is also interesting to note that
the next two measures are two that are not widely used: the third place is held by
the KLD measure (see Gries 2020), and the fourth place is held by the improved
version of range, rangewithsize, that I proposed above.

At first glance, these results may not seem very impressive: The PREs in gen-
eral are low and it’s not like the forests involving the new measure ‘blow all other
measures out of the sky’. However,

– the fact remains that they do score highest (and let’s not forget that newly-
developed corpus-linguistic measures are often not tested against truly exter-
nal data/standards like this in the first place; see, e.g., Kromer 2003 stating his
adjusted frequency measure is psycholinguistically more adequate than oth-
ers without any evidence for that assessment);

– I would actually already have considered the new measure somewhat of a suc-
cess even if it had only been as good as the average of the existing DMs sim-

statistic; vc: variation coefficient; idf: inverse document frequency; juilld: Juilland’s D (for
unequal corpus part sizes); rosgrens: Rosengren’s S (for unequal corpus part sizes); carrd2:
Carroll’s D2; kld: Kullback-Leibler divergence; kldnorm: Kullback-Leibler divergence nor-
malized to the interval [0,1]; dp: Deviation of Proportions; dpnorm: Deviation of Proportions
normalized to the interval [0,1]; dpnofreq: DPwithoutfrequency.
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Figure 4. Median PRE-scores for 27 random forests

ply because it is ‘clean’ and, unlike others, controls for frequency (by holding
it constant), i.e. it is not merely an amalgam of mostly frequency and ‘some
unknown amount of something else’.

On a corpus-by-corpus basis, the results hardly change the overall picture:

– the forests with dpnofreq score the highest PRE for all corpora but the com-
plete BNC: the BNC Baby, the BNC Sampler, the spoken part of the BNC, the
Brown corpus, and the ICE-GB;

– the forests with dpnofreq score a very close second-highest PRE for the
BNC, with only a very small difference to Juilland’s D.

And at least some such differences are to be expected, given how much genre
effects can affect lexical predictors on processing (see Baayen et al. 2016 for dis-
cussion). Still, the bottom line is that DPnofreq is a conceptually cleaner DM in how
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it can be measured independently of frequency and the forests with it outperform
all other tested measures in 5 out of 6 corpora and in the overall aggregate in terms
of the PRE/deviance of the lexical decision times.

4. Two short excurses

In this brief section, I want to briefly mention two consequences of the above dis-
cussion, which I cannot discuss in more detail, given space considerations.

4.1 Excursus 1 rangenofreq

As a first side remark, it is worth pointing out that the general approach used here
for DP can also be used for other measures, where by “the general approach” I
mean the notion of

– computing an observed value;
– computing the largest and smallest theoretically possible values given a word’s

overall frequency;
– relativizing the observed value against the theoretically possible range.

For example, this can easily be applied to range or even rangewithsize. Imagine we
have a corpus with 5 parts with these sizes and we are interested in two words that
have the following frequencies in those 5 parts:

rm(list=ls(all=TRUE))
corpus.part.sizes.rel <- c(0.1, 0.2, 0.25, 0.35, 0.1)

names(corpus.part.sizes.rel) <- paste0(“part”, 1:5)
no.of.corpus.parts <- length(corpus.part.sizes.rel)
freq.of.word1.in.parts <- c(0, 1, 0, 1, 0)
freq.of.word2.in.parts <- c(0, 2, 3, 2, 1)

The range-values for word1 and word2 would be 0.4 and 0.8 respectively:

c(“range for word1”=(obs.word1 <- mean(freq.of.word1.in.parts>0)),
“range for word2”=(obs.word2 <- mean(freq.of.word2.in.parts>0)))

## range for word1 range for word2
##             0.4             0.8

The value for word1 is on the lower side of things, but it is again clear that, for a
word with that frequency, it has the highest possible range because a word with
two occurrences cannot be in more than two parts, i.e. obs is already upp. Hence,
since we already have the observed ranges, we can now also compute low (which
is always 1/no of corpus parts):

low <- 1/no.of.corpus.parts)
## [1] 0.2
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And then we compute upp (which is always ’all instances of the word are maximally
spread out’) and transform the three values per word to the [0,1] interval to get
range values that do not by design reflect frequency, too:

(upp.word1 <- min(2, no.of.corpus.parts)/no.of.corpus.parts)
## [1] 0.4
(range.wout.freq.word.1 <- zero2one(c(low, upp.word1, obs.word1))[3])
## [1] 1

However, consider now word2, which could be more evenly dispersed because it
occurs often enough to potentially occur at least once in every corpus part, and
our new approach can see that:

(upp.word2 <- min(8, no.of.corpus.parts)/no.of.corpus.parts)
## [1] 1
(range.wout.freq.word.2 <- zero2one(c(low, upp.word2, obs.word2))[3])
## [1] 0.75

Again we see that, now, the DM really measures dispersion and recognizes the
spread of a word given its frequency.

4.2 Excursus 2: fast bowler vs. fast food

In the previous paper on AMs, I showed how, when collocates of fast are studied
on the basis of both their co-occurrence frequency and their association to fast
(using an AM untainted by frequency), we find that fast bowler is only a bit less
frequent than fast food but the association strength of fast bowler is notably greater
than that of fast food, which is probably not what most people consider useful:
Certainly, fast food is the more interesting/important collocation of the two. In
that paper, I pointed at the ‘solution’: This result is due to us using ‘only’ pure
frequency and pure association, but not also dispersion: fast bowler is concen-
trated in a much smaller number of files than fast food, i.e. its range is smaller.
But, as mentioned above, range is a very crude measure that takes neither cor-
pus part sizes nor the frequencies of words in the parts into consideration so what
happens if we look at a more fine-grained measure such as DP? DP for fast food
and fast bowler is 0.9533425 and 0.962413 respectively. This means that fast food
is indeed more evenly dispersed, but (i) the difference between the values is very
small (0.0090705 on a scale from 0 to 1) and (ii) both values are very close to the
theoretical maximum of DP of 1 because that measure, like most traditional DMs,
is overly influenced by the relatively low frequency of both collocations.

What happens if we apply our new measure to this case and, thus, partial out
the effect that the slightly higher frequency of fast food may have, i.e. if we really
only look at dispersion? The results change quite a bit: DPnofreq for fast food and
fast bowler are now 0.7169702 and 0.7544027 respectively. Not only are the val-
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ues nowhere nearly as maximal even for a collocation like fast food whose 154
instances are after all attested in 95 files, but also the difference to fast bowler,
whose 134 instances are only attested in nearly 47 files, is now more pronounced:
the difference between the two collocations’ DPnofreq is more than 4 times as
large as the difference between their DPs. While the exact size of that numeri-
cal difference proves very little, I do think that not only does DPnofreq capture the
frequency-and-range ratios of the two collocations better than DP did, but I also
prefer to not have near maximal dispersion values of > 0.95 for words with such
ranges, plus the bigger difference between the two collocations is certainly also
more compatible with the much higher utility of fast food as a collocation than
fast bowler. Be that as it may, the main point of this excursus was to show that the
new dispersion-only measure can of course, and probably should, also be utilized
in the identification of collocations so as to make sure that we do contextualize the
frequencies and AM results properly (see again Gries 2019b for more discussion
of this ‘tupleization’).

5. Concluding remarks

This paper tried to make three main points:

(1) Much of corpus linguistics is still using statistical measures that prioritize
convenience (e.g., of sortability along one dimension) over the ‘cleanness’
of that dimension: unlike what about 50 years of publications on dispersion
might make one expect, nearly all of our DMs reflect frequency more than
they do dispersion (just as some of our most widely-used AMs reflect fre-
quency more than they do association).

(2) I motivated and defined a DM called DPnofreq that by design controls for fre-
quency and, thus, does not conflate frequency and dispersion in its output; it
is, therefore, a real, conceptually clean/pure DM, which can return very high
or very low dispersion values for words regardless of the frequencies of the
words.

(3) I showed that this measure coupled with the now independent notion of fre-
quency nearly always has a higher degree of predictive power than that of
previous less clean measures and even than that of previous less clean mea-
sures together with frequency.

Obviously and as always, more validation and testing will be necessary and the
result of this might well be that true dispersion on its own has less predictive
power than it might seem right now – but at least we would then know that and
would be calling a spade a spade rather than, what I have done myself, promote
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the value of a measure of ‘dispersion’, which really derives most of its merit from
frequency.
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