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Regression analysis in translation studies

Stefan Th. Gries & Stefanie Wulff
University of California, Santa Barbara / University of North Texas, Denton

This paper provides an overview of how to compute simple binary logistic 
regressions and linear regressions with the open source programming language 
R on the basis of data from the INTERSECT corpus of English texts and their 
French and German translations. First, we show how one of the key statistics of 
logistic regressions is conceptually similar to the chi-square test of frequency 
tables. Second, we exemplify different applications of logistic regressions – with a 
binary predictor, with an interval/ratio-scaled predictor, and with a combination 
of both. Finally, we briefly exemplify a linear regression. In all cases, we discuss 
significance tests and provide examples for effective visualizations.

1.  Introduction

1.1  Types of regressions and variables

One of the most remarkable current trends in theoretical and applied linguistics 
is the evolution of the field towards more empirically rigorous and quantitative 
methods. In theoretical linguistics, after a long reign of generative approaches 
to grammar and their largely intuitive grammaticality judgments, there is now 
a lot of interest in, and work on, probabilistic theories of language acquisition, 
representation, and processing, and such approaches rely more and more on 
experimental and observational data that are analyzed with statistical tools. In 
a similar vein, many areas of applied linguistics such as second language acqui-
sition also have turned to quantitative tools, and translation studies are no 
exception.

Given that this is only a relatively recent development and that different 
kinds of data are only slowly becoming available (e.g. corpora on lesser-studied 
languages and/or parallel and aligned corpora), the move towards more 
quantitative methods is still in progress. Practitioners are constantly learning 
about, and developing, new methods and areas of application for existing meth-
ods. One particularly flexible and widespread family of methods is that of regres-
sion analysis. This method involves analyzing the degree to which a dependent 
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variable is correlated with one or more predictors, where we use predictors as a 
cover term for both individual independent variables and their n-way interac-
tions. The dependent and independent variables in a regression can be of various 
levels of measurement:

−	 categorical data, i.e. data that reflect that data points belong to differ-
ent categories such as a binary variable ClauseOrder (‘main clause’ vs. 
‘subordinate clause’) or an n-ary variable such as PhraseType (NP vs. VP 
vs. PP);

−	 ordinal data, i.e. rank-ordered data such as syntactic Complexity (on a scale 
such as “high” > “intermediate” > “low”);

−	 ratio-/interval-scaled, i.e. continuous numeric data such as SyllableLength, 
ReactionTime, etc.

At the risk of some simplification, regressions are distinguished depending 
on (i) the type of relation between the dependent variable and the predictors 
and (ii) the level of measurement of the dependent variable. As to (i), one can 
distinguish between linear regressions and non-linear regressions; we will only 
focus on the former. As to (ii), one can distinguish between binary logistic and 
multinomial logistic regressions (for categorical dependent variables), ordinal/
multinomial regressions (for ordinal data), and linear regressions (for ratio-/
interval data).

Often but not necessarily, the dependent variable can be conceptualized as the 
effect, whereas the predictors can be conceptualized as causes. Regression analy-
ses are typically used to compute expected values of a dependent variable, which 
allow to predict numeric, or classify categorical, values of dependent variables. In 
this chapter, we will discuss binary logistic regression and linear regression. For 
mathematical reasons, linear regressions would usually be introduced first, but 
given that (i) binary logistic regression can be shown to be related to the χ2-test 
(chi-squared test) many scholars are familiar with and (ii) data in translation stud-
ies are probably less likely to be of a type that allows linear regressions, we will not 
follow this usual pattern. Note also that a zip-file with example data and code is 
available from the first author’s website at 〈http://tinyurl.com/stgries〉.

1.2  The example data

The data to be used to exemplify regressions here are from the INTERSECT cor-
pus compiled and graciously provided by Raf Salkie at the University of Brighton. 
The corpus consists of
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texts in English and their translations in French or German, stored in electronic 
form. The texts are varied, including fiction, journalism, business reports, UN 
and EU documents, science and technology texts, tourist brochures, and other 
genres. The corpus contains about 1.5 million words in French and English, and 
about 800,000 words in German and English.

〈http://artsresearch.brighton.ac.uk/research/academic/salkie/portfolio〉; 
2 Dec 2010

We use data on the ordering of main clauses (MC) and adverbial clauses (SC) in 
English and German. For causal and temporal adverbial clauses, both languages 
license both theoretically possible orders, as exemplified for causal subordinate 
clauses in (1) and (2).

	 (1)	 a.	 She was bitten by the otter because she made a sudden move.� MC-SC
		  b.	 Because she made a sudden move, she was bitten by the otter.� SC-MC

	 (2)	 a.	 Sie wurde vom Otter gebissen, weil sie eine hastige Bewegung machte.
� MC-SC
		  b.	 Weil sie eine hastige Bewegung machte, wurde sie vom Otter gebissen.
� SC-MC

We retrieved a sample of sentences with causal and temporal adverbial clauses 
from the German component of the corpus by searching for a set of causal and 
temporal conjunctions (e.g. weil ‘because’, nachdem ‘after’, bevor ‘before’, and oth-
ers), retrieved the corresponding sentences from the aligned English component, 
and then selected a pseudorandom subset for analysis. For this chapter, whose 
main purpose is illustrative, we annotated the corresponding examples in both 
languages with regard to the following variables, which have been discussed in the 
context of clause ordering (cf. Diessel 2005, 2008)

−	 ClOrder: the order of the clauses: “mc-sc” vs. “sc-mc”;
−	 SubordType: the type of adverbial clause: “causal” vs. “temporal”;
−	 LengthDiff: the number of words of the main clause minus the number of 

words of the subordinate clause;
−	 Conj (the German data only): the subordinating conjunction: als ‘as/when’, 

bevor ‘before’, nachdem ‘after’, and weil ‘because’.

For the subsequent statistical analysis, the data were saved into two tab-delimited 
text files (as exported from a spreadsheet software) – one for German, one for 
English – with both having the usual case-by-variable format structure as 
exemplified in Table 1. This data set was then partially analyzed with an eye to 
exemplifying logistic and linear regressions as outlined in Sections 2 and 3.
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Table 1.  Schematic excerpt of the raw data table for German in case-by-variable format

Case Preceding Match Subsequent Order SubordType Len_ MC ...

1 ... weil ... mc-sc causal 9 ...
2 ... nachdem ... sc-mc temporal 7 ...
... ... ... ... ... ... ... ...

1.3  The software

These days, statistical analyses are done computationally. There are many applica-
tions available and for many reasons, we are using R (R Development Core Team 
2011). R is not just a statistics program, but a full-fledged programming language, 
which entails that it does not by default come with a nice point-and-click GUI, 
but a command-line interface. However, it is freely available software, the leading 
platform for the development and implementation of new statistical techniques, 
and, given its open-source nature, immensely powerful in terms of the number 
and range of methods and graphs available.

When R is started, by default it only shows a fairly empty console and expects 
user input from the keyboard. Nearly all of the time, the input to R consists of what 
are called functions and arguments. Just like in a spreadsheet software, functions are 
commands that tell R what to do; arguments are specifics for the commands, namely 
what to apply a function to (e.g. a value/number, the first row of a table, a complete 
table, etc.) or how to apply the function to it (e.g. whether to compute a mean or 
a logarithm, which kind of logarithm to compute: a binary log, a natural log, etc.).

Before we explore how to understand and perform regressions, we first need 
to load the data into R. One way to read a raw data file involves the function read.
delim, which, if the raw data table has been created as outlined above, requires 
only one argument, namely file, which, when defined as below, prompts the user 
to choose the path to the file containing the data; crucially, the two files are aligned 
such that the nth row in the English file is the translation of the nth row in the 
German file. The following code will therefore load the files with the German and 
the English data into R, where the “<-” tells R to store content into the data struc-
ture to the left of the ‘arrow’ (i.e. here a data frame, R’s version of a table, german 
and english), where “¶” means ‘press ENTER’, and where text after a # is ignored 
and can be used for comments:

german <- read.delim(file = file.choose()) # load German data into german¶
english <- read.delim(file = file.choose()) # load English data into english¶

To check whether the loading was successful, we can explore the data frame. 
The  function summary summarizes each column of the data frame by either 
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listing the most frequent levels (for categorical variables) or by providing numer-
ical summaries such as minima, maxima, means, etc. (for numerical variables):

summary(german)¶
	 CONJ	 SUBORDTYPE	 ORDER	 LEN_MC	 LEN_SC
als                :  93	 caus:   199	 mc-sc: 275	 Min.        :   2.000	 Min.       :    2.000
bevor          :  46	 temp: 204	 sc-mc: 128	 1st Qu.   :   6.000	 1st Qu.  :    5.000
nachdem   :  65	 Median :   8.000	 Median :    8.000
weil              :199	 Mean     :   9.266	 Mean     :    9.362
	 3rd Qu.  : 11.000	 3rd Qu.  : 12.000
	 Max.       : 31.000	 Max.       : 36.000

The next section will explain aspects of the logic underlying logistic regressions. 
For reasons of space, this chapter can of course not provide a comprehensive intro-
duction to all its details and complications; Section 4 will mention some useful 
references for follow-up study.

2.  Methods 1: Binary logistic regression

Logistic regression is a regression method that does not come easy to beginners. 
This is because, unlike the default type of linear regression discussed later,  it 
involves a transformation of the data that ensures that the regression predicts val-
ues that are theoretically plausible and/or practically possible to attain. However, 
at least a first understanding can be gained by comparing the results of a logistic 
regression with the more familiar χ2 test and the related G statistic.

2.1  From cross-tabulation to binary logistic regression

To determine, for instance, whether there is a tendency for causal and temporal 
subordinate clauses to prefer a particular clause order in German (and later 
in English), a first descriptive step would be a cross-tabulation. In R, this can 
be done easily with the function table, which only requires the two variables 
(vectors or factors, in R’s parlance) as arguments; the first named argument 
goes into the rows, the other into the columns. The result of the tabulation is 
assigned to a data structure orders and then printed to the screen:

orders <- table(german$SUBORDTYPE, german$ORDER)¶
orders¶
		  mc-sc	 sc-mc
	 caus	 184	   15
	 temp	    91	 113
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There seems to be a strong correlation such that German causal subordinate clauses 
prefer to occur after main clauses whereas German temporal subordinate clauses 
prefer to occur before main clauses. It is usually useful to (i) compare the observed 
frequencies in against those expected by chance from the row and column totals 
and (ii) quantify this comparison by means of the so-called Pearson residuals. 
These residuals are positive (or negative) if the observed frequencies are larger (or 
smaller) than the expected frequencies, and the more they deviate from zero, the 
stronger the effect. In R, we can compute these easily from the results of a χ2-test as 
computed with the function chisq.test, which requires as arguments the table to be 
tested (i.e. orders) and correct = FALSE (when the sample size n > 60):

test.orders <- chisq.test (orders, correct = FALSE)¶

Now, we can retrieve the residuals of the four cells, which are computed as shown 
in (3) and which reveal the strong pattern already suggested by the observed fre-
quencies above:

	 (3)	
observed expected

expected
−

test.orders$expected # compare top left to (199*275)/403¶
		  mc-sc	 sc-mc
	 caus	 135.7940	 63.20596
	 temp	 139.2060	 64.79404

test.orders$residuals # compare top left to (184−135.794)/sqrt(135.794)¶
		  mc-sc	 sc-mc
	 caus	    4.136760	 −6.063476
	 temp	 −4.085750	    5.988708

The χ2-value from a χ2-test is the sum of the squared residuals, as shown in (4), 
and here, the preferences of the subordinate clause types are highly significant, as 
shown by the p-value:

	 (4)	
2

2 ( )observed expected
expected

c
−

= ∑

test.orders # compare to sum (test.orders$residuals^2)¶
	 Pearson’s Chi-squared test
data: orders
X-squared = 106.4365, df = 1, p-value < 2.2e-16
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One important way to quantify the size of this highly significant correlation is 
the odds ratio, which tells you how the likelihood of one variable level changes 
in response to how the other variable changes. Here, for causal clauses, the odds 
for “mc-sc” are 184/15≈12.267 (i.e. this is how much “mc-sc” is more likely than 
“sc-mc”), for temporal clauses the odds are 91/113≈0.805 (i.e. this is how much 
“mc-sc” is more likely than “sc-mc” – i.e. it is less likely). Thus, looking at both 
clause types, the odds ratio for “mc-sc” is 12.267/0.805≈15.23 times more likely 
with causal clauses than with temporal clauses. Often, this odds ratio is logged to 
yield log odds so that the range of possible values extends nicely from −∞ to +∞ 
(with 0 reflecting the absence of a correlation).

(184/15) / (91/113) # odds ratio¶
[1] 15.23223
log (15.23223) # log odds¶
[1] 2.723414

While the χ2-test/value is widely used, another way to test such distributions for 
significance is the G-test/value. It is computed as shown in (5) and below:

	 (5)	 ( ) ( )2 2 ln where ln ‘natural logarithm’observedG observed expected= ⋅ ⋅ =∑

2*sum(orders*log(orders/test.orders$expected)) # G¶
[1] 116.9747

Most of the time, the results of a χ2-test and the G-test are very similar, but it is the 
latter that is very frequently used in the context of this chapter’s topic, regression 
modeling. More specifically, the notion underlying regressions is that outcomes 
of a dependent variable (or response, often considered an ‘effect’) are modeled 
as a function of one or more predictors (i.e. independent variables and/or their 
interactions, often considered ‘causes’) in a regression equation. To determine 
which predictors are needed to predict the dependent variable in a way that 
strikes a balance between prediction accuracy and Occam’s razor, such a regres-
sion modeling process involves comparing different models to each other. One 
of these models is the so-called null model, i.e. a model without any predictors 
(reflecting just the two orders’ overall frequencies). In the simplest case, one 
compares a model with one predictor (such as german$SUBORDTYPE) against the 
null model, and if the one predictor makes significantly better predictions than 
the null model, we say it has a significant effect; it should become clear that this 
approach is largely only terminologically different from the simple χ2-test. Let’s 
apply this approach to the present question to better appreciate the analogy.
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2.2  Binary logistic regression with one binary predictor

As a first step, we load the package Design into R (because it makes some aspects 
of regressions easier than R’s standard functionality). Then, we define a logistic 
regression model (lrm) model.01 using a formula, which contains the response, a 
tilde, and the predictor(s) as well as the argument data to tell R where the variables 
come from. Then we print this model (only parts of the output will be provided 
and discussed here).

library(Design)¶
model.01 <- lrm(ORDER ~ SUBORDTYPE, data = german)¶
model.01¶
[...]
	 Obs	 Max 	 Deriv	 Model L.R.	 d.f.	 P
	  403		  2e-09 	        116.97	     1	 0
	         C		      Dxy	 Gamma	 Tau-a
	 0.776 		  0.552	      0.877	    0.24
	       R2		    Brier
	 0.353		  0.159
	 Coef 	 S.E. 	 Wald 	 Z	 P
Intercept 	 −2.507 	 0.2685	 −9.34		  0
SUBORDTYPE = temp	    2.723 	 0.3032 	    8.98		  0

The output is best approached with three questions. First, “is there a significant 
correlation between the response and the predictor(s)?” Yes, there is: among 
other things, the output contains (in the rectangle) the above G-value (as Model 
Likelihood Ratio), the above degrees of freedom (d.f.), and the p-value (0). Thus, 
the model with one predictor (german$SUBORDTYPE) fares significantly better 
than the null model and we say the predictor is significantly correlated with the 
clause order.

Second, “how well does the model predict clause orders?” 1 This is answered 
by the circled C- and R2-values provided by R. C ranges from 0.5 (predictions are 
at chance accuracy) to 1 (perfect predictive accuracy; ideally, C ≥ 0.8), and R2 is 
a particular version of a coefficient of determination ranging from 0 (no correla-
tion between the response and the predictors) and 1 (perfect correlation between 
the predictors). Here, C is not quite high enough, but we are very close to it so the 
model’s accuracy is ‘not bad’.

.  For reasons of space, in this paper, we do not concern ourselves with the difference 
between predicting data and classifying data.



© 2012. John Benjamins Publishing Company
All rights reserved

	 Regression analysis in translation studies	 

Third, “if there is a significant effect, what is its nature?” For this question, we 
have to turn to the table at the bottom and the coefficients in the rounded rect-
angle, but also understand what a regression equation does. In the case of logis-
tic regression, R tries to define an equation that computes the probability of the 
alphabetically second level of the response (i.e. “sc-mc”), and it does that using

−	 an intercept, which reflects the probability of “sc-mc” when all other 
categorical predictors are their alphabetically first reference levels (i.e. when 
SubordType = “caus”) and/or all interval-/ratio-scaled predictors (none here) 
are zero;

−	 a coefficient for each predictor’s effect on the probability of “sc-mc”; here, a 
coefficient for when SubordType changes from “caus” to “temp”.

That is to say, when the (sole) predictor is “caus”, the regression equation becomes 
(6) (because, since SubordType = “caus”, the coefficient for SubordType = “temp” 
‘does not apply’ and is set to 0). On the other hand, when the (sole) predictor is 
“temp”, then the regression equation’s result does apply and is set to 1, yielding (7).

	 (6)	 regression result = −2.507 + 0⋅2.723 = −2.507

	 (7)	 regression result = −2.507 + 1⋅2.723 = 0.216

But what do these results mean and how can they reflect probabilities when they 
are not between 0 and 1 (as probabilities are)? The answer to both questions is that 
these regression results are so-called logits of the probabilities that the regression 
predicts (as shown in (8)), which means we can get the predicted probabilities by 
computing the inverse logits (as shown in (9)).

	 (8)	 logit of a probaility log
1

p
p

p
=

−

	 (9)	
1

inverse logit of a value x =
1 xe−+

Thus, if we apply (9) to (6) and (7), our third question gets answered: we see 
how much SubordType = “temp” increases the probability of “sc-mc” (compared 
to SubordType = “caus”):

–	 the predicted probability of “sc-mc” when SubordType = “caus” is ≈ 0.075;

1/(1 + exp (– –2.507))¶
[1] 0.07536891
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–	 the predicted probability of “sc-mc” when SubordType = “temp” is ≈ 0.554.2

1/(1 + exp (–0.216))¶
[1] 0.553791

To sum up, in the German data, there is a highly significant and intermediately 
strong correlation between the type of subordinate clause and the position it pre-
fers to occupy relative to the main clause (R2 = 0.353, G = 116.97, df = 1, p < 0.001): 
causal subordinate clauses prefer to follow the main clause whereas temporal sub-
ordinate clauses prefer to precede it. Ideally, the reader would perform this type of 
analysis for the English data provided in the companion file and find that (i) in the 
English data, the order “sc-mc” is much more frequent than in the German trans-
lations and (ii) while temporal subordinate clauses in English also prefer “sc-mc” 
more than causal clauses, that preference is less strong.

2.3  Binary logistic regression with an interval-/ratio-scaled predictor

In this section, we will turn to an interval-/ratio-scaled predictor, namely 
LengthDiff. Note that this variable is the difference of main clause length minus 
subordinate clause length (in words). Thus, when that value is positive, the main 
clause is longer than the subordinate clause, and when it’s negative, the main 
clause is shorter. We fit a new model.01, overwriting the one from the previous 
section:

model.01 <- lrm(ORDER ~ LENGTH_DIFF, data = german)¶
model.01¶
[...]
	 Obs	 Max 	 Deriv	 Model	          L.R.	       d.f. 	            P
	 403 		  2e-13		          7.58	          1	 0.0059
	         C 		      Dxy		  Gamma	 Tau-a
	 0.603 		  0.207
	       R2 		   Brier
	 0.217		    0.09	 0.026	 0.213

	 Coef 	 S.E. 	 Wald 	 Z	 P
Intercept 	 −0.77673 	  0.10849	  −7.16 		  0.000
LENGTH_DIFF 	    0.04418	  0.01639	     2.69 		  0.007

.  Another way to interpret the coefficients is to antilog them: First, eintercept = e–2.507 = 
0.08151, which one recognizes are the 15/184 odds for “sc-mc” when SubordType = “temp”. 
Second, ecoefficient for SubordType = “temp” = e2.723 = 15.22593, which one recognizes is the above 
odds ratio (cf. p. 41).
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We can analyze this output with the same three questions as above. First, there 
is a significant correlation between the clause order in German and the length 
difference between clauses; however, the correlation is considerably weaker than 
before (R2 = 0.217, G = 7.58, df = 1, p = 0.0059). Second, in line with the weaker 
correlation, the model’s accuracy at predicting the right order is also markedly 
worse (R2: see above, C = 0.603). Third, the nature of the effect: As mentioned 
above, the intercept reflects the probability of “sc-mc” when all other categori-
cal predictors are their alphabetically first reference levels [none here] and/or all 
interval-/ratio-scaled predictors are zero. Thus, the probability of “sc-mc” when 
LengthDiff = 0 (both clauses are equally long) is this:

1/(1 + exp (−0.77673))¶
[1] 0.3150251

The coefficient of LengthDiff, on the other hand, reflects how the probability 
for “sc-mc” changes for every unit-change of LengthDiff, i.e. when, for example, 
LengthDiff is not 0 but 1, is not 1 but 2, etc. Most importantly, the fact that it 
is positive shows that, as LengthDiff increases – i.e. as main clauses get lon-
ger compared to their subordinate clauses – the probability that they occur after 
the subordinate clause (“sc-mc”) increases, too. And given an overall tendency of 
short-before-long in many ordering phenomena, that makes a lot of sense. It is 
crucial, however, to realize that, because the coefficient for LengthDiff is used to 
compute logits of probabilities and the logit transformation is non-linear, changes 
in LengthDiff do not affect the probability of “sc-mc” uniformly. For instance, 
the code below shows that the probability of “sc-mc” does not always increase by 
the same value when the subordinate clause becomes a word longer.

1/(1 + exp (−(−0.77673 + (−20*0.04418))))¶
[1] 0.1597177
1/(1 + exp (−(−0.77673 + (−19*0.04418))))¶
[1] 0.1657365 # a 1-word increase (from −20 to −19) of the length difference 
	 increases p(“sc-mc”) by 0.0060188
1/(1 + exp (−(−0.77673 + (−10*0.04418))))¶
[1] 0.2281952
1/(1 + exp (−(−0.77673 + (−9*0.04418))))¶
[1] 0.2360696 # a 1-word increase (from −10 to 9) of the length difference 
	 increases p(“sc-mc”) by 0.0078744
1/(1 + exp (−(−0.77673 + (0*0.04418))))¶
[1] 0.3150251
1/(1 + exp (−(−0.77673 + (1*0.04418))))¶
[1] 0.3246354 # a 1-word increase (from 0 to 1) of the length difference 
	 increases p(“sc-mc”) by 0.0096103



© 2012. John Benjamins Publishing Company
All rights reserved

	 Stefan Th. Gries & Stefanie Wulff

This effect is also illustrated in Figure 1 and the main reason that logistic regres-
sions are sometimes difficult to understand. Note in particular how the right panel 
shows how the logit transformation makes the predicted probabilities level off 
close to y = 0 and y = 1 so that no probabilities < 0 or > 1 can be predicted. Given 
the difficulty of understanding such results, one will sometimes find a so-called 
average predicted difference, which gives “the expected, or average, difference in 
[the predicted probability] corresponding to a unit difference in [an input vari-
able]” (cf. Gelman & Hill 2008: 101ff.), but other alternatives are also available. 
Again, ideally, the reader would perform the analogous analysis for the English 
data and find that (i) the order “sc-mc” is of course still much more frequent in the 
English than in the German data, but (ii) in the English translations, LengthDiff 
has no significant effect on the clause ordering.
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Figure 1.  The probability of “sc-mc” as a function of LengthDiff

2.4  Logistic regression with more than one predictor

Let us finally look at one more complex example, a logistic regression that involves 
a categorical predictor, an interval-/ratio-scaled predictor, and their interaction. In 
this example, we try to predict the ordering in German on the basis of the subordi-
nating conjunction that is used – three temporal ones (als ‘as’/’when’, bevor ‘before’, 
and nachdem ‘after’) and the causal weil ‘because’ – and LengthDiff from above 
as well as their interaction. We again define a model object and the only new point 
is that predictors to be included together with their interaction are combined with 
“*” (if the interaction is not wanted, one uses a “+” instead):
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model.01 <- lrm (ORDER ~ CONJ*LENGTH_DIFF, data = german)¶
model.01¶
[...]
	 Obs	 Max 	 Deriv	 Model	         L.R.	     d.f. 	 P
	 403 		  6e-09		    135.21	         7	 0
	        C		     Dxy		  Gamma	 Tau-a
	 0.818		  0.636		       0.674	 0.276
	       R2		    Brier
	 0.399 		  0.149
	 Coef 	 S.E. 	 Wald 	 Z	 P
Intercept	    0.46337	 0.22543	    2.06		  0.0398
CONJ = bevor 	 −0.81963	 0.39463	 −2.08		  0.0378
CONJ = nachdem 	 −0.06495 	 0.34115	 −0.19		  0.8490
CONJ = weil 	 −2.96835	 0.35207	 −8.43		  0.0000
LENGTH_DIFF 	    0.11171	 0.03827	    2.92		  0.0035
CONJ = bevor * LENGTH_DIFF	 −0.14790	 0.06384 	 −2.32		  0.0205
CONJ = nachdem * LENGTH_DIFF 	 −0.06980	 0.05222	 −1.34		  0.1813
CONJ = weil * LENGTH_DIFF 	 −0.10948	 0.05521	 −1.98		  0.0474

As before, it is best to approach the output with the three above questions in mind. 
First, there is a significant correlation between the response and the predictors, 
and it is the highest and strongest we have seen so far (R2 = 0.399, G = 135.21, 
df  =  7, p  <  0.001). Second and correspondingly, the model does a good job at 
predicting the clause ordering (R2: see above, and C = 0.818).

The third question – how to interpret the coefficients – is a bit harder to tackle 
in multifactorial models. This is for two reasons. First, in a multifactorial model, 
there can be an overall significant correlation (as indicated by R2 etc.), but some 
predictors in the model may not contribute significantly to it. There are two con-
ceptually very different ways of handling this. One is to perform what is called 
model selection: on the basis of Occam’s razor, predictors that do not contribute 
enough to the model are weeded out successively until a model is found that 
contains only significant predictors (cf. Crawley 2007: Chapters 9, 17 for discus-
sion). The other is to not perform model selection and report the insignificant pre-
dictors as insignificant (cf. Harrell 2001: Section 4.3 for discussion). Given space 
constraints, we must restrict ourselves to mentioning that the interaction of Conj 
and LengthDiff is only marginally significant (p = 0.084; cf. the companion code 
file) and only explain the for now most important issue, namely how to make sense 
of the coefficients.

The first part of interpreting coefficients is as discussed above. As before, 
the intercept reflects the predicted probability of “sc-mc” “when all other 
categorical predictors are their alphabetically first reference levels […] and/or 
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all interval-/ratio-scaled predictors are zero.” Thus, the intercept here indicates 
the predicted probability when Conj = “als” and LengthDiff = 0:

1/(1 + exp (–0.46337))¶
[1] 0.6138133

Also as before, the coefficients for the other three conjunctions indicate the pre-
dicted probabilities of “sc-mc” when Conj ≠ “als” but another conjunction. It is 
immediately obvious that the only causal conjunction comes with a much lower 
probability of “sc-mc” ordering.

1/(1 + exp (−(0.46337 − 0.81963))) # bevor = sign. different from als¶
[1] 0.4118652
1/(1 + exp (−(0.46337 − 0.06495))) # nachdem ≠ sign. diff. from als¶
[1] 0.598308
1/(1 + exp(−(0.46337 − 2.96835))) # weil = sign. diff. from als¶
[1] 0.0755098

The coefficient for LengthDiff now indicates how the probability for “sc-mc” 
changes for every unit-change (word-length difference) of LengthDiff, when, 
crucially, Conj = “als”. The following are the predicted probabilities of “sc-mc” 
when LengthDiff = 1 and 10 and when Conj = “als”. As before, the coefficient 
is positive: as LengthDiff increases so does the probability that the subordinate 
clause with als precedes the main clause.

1/(1 + exp(–(0.46337 + 0.11171)))¶
[1] 0.6399345
1/(1 + exp(–(0.46337 + 10*0.11171)))¶
[1] 0.829271

The more interesting part is now concerned with the interaction of Conj and 
LengthDiff. For example, we have seen that increasing values of LengthDiff 
increase the probability of “sc-mc” for Conj = “als”, but the (marginally signifi-
cant) interaction now reveals that this is not so for the other conjunctions: When 
Conj = “bevor”, then increasing values of LengthDiff decrease the probability 
of “sc-mc”: we add 0.11171 for every word-length difference but must also sub-
tract 0.1479 for every word-length difference. When Conj = “nachdem”, then 
increasing values of LengthDiff decrease the probability of “sc-mc” compared 
to when Conj = “als”: one adds 0.11171, but also has to subtract 0.0698, for 
every word-length difference. Finally, LengthDiff has hardly no effect when 
Conj = “weil”: the 0.11171 that are added for each word more are nearly offset 
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completely by the –0.10948 that must be subtracted again. In other words, 
LengthDiff has different effects for each conjunction, which is graphically rep-
resented in Figure 2.
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Figure 2.  The probability of “sc-mc” as a function of Conj:LengthDiff

3.  Methods 2: Linear regression

Let us now briefly turn to linear regressions. Just as logistic regressions are related 
to χ2- and G-tests, so are linear regressions related to the product-moment correla-
tion r and the t-test. If we want to determine how well we can predict the differ-
ences in clause lengths in English on the basis of the differences in clause lengths 
in the German translations, we use the function lm (for linear model) and then 
print its summary; note the use of the $-sign in dataframe$column

model.01 <- lm(english$LENGTH_DIFF ~ german$LENGTH_DIFF)¶
summary(model.01)¶
[...]
Coefficients:
	 Estimate	 Std. Error	 t value	 Pr(>|t|)
(Intercept)	 −0.59386 	 0.32295	 −1.839	 0.0667.
german$LENGTH_DIFF	    0.73522 	 0.04719	  15.581	 <2e-16 ***
[...]
Multiple R-squared:	 0.3771,	 Adjusted R-squared: 0.3755
F-statistic: 242.8 on 1 and 401 DF, p-value: < 2.2e-16
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There is a significant correlation between the response and the predictor (adj. 
R2 = 0.3755, F1, 401 = 242.8, p < 0.001), but the correlation is only intermediately 
high. Fortunately, the coefficients are much easier to interpret because a linear 
regression does not involve a (logit) transformation – it models the response 
directly. That means, the coefficient for the German LengthDiff indicates directly 
how much the predicted English LengthDiff increases for every unit increase of 
a German LengthDiff: 0.7355. The following two lines of code exemplify two 
such predictions:

−0.59386 + −32*0.73522 # prediction for when german$LENGTHDIFF = −32¶
[1] −24.1209
−0.59386 + 25*0.73522 # prediction for when german$LENGTHDIFF = 25¶
[1] 17.78664

The companion code file provides the code to produce Figure 3, which illustrates 
the correlation between the length differences and indicates the predicted trend 
with a regression line. In fact, the coefficient for German LengthDiff is the slope 
of the regression line. It is easy to see that the first prediction (cf. the left arrow) is 
quite good (because when x = −32, then the corresponding y-value is fairly close 
to −24) and that the second prediction (cf. the right arrow) is quite bad (because 
when x = 25, then the corresponding y-value is fairly far away from 17.8).
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Just like logistic regressions, linear regressions can involve more than one pre-
dictor, and the overall logic is the same as before: interactions between predictors, 
for example, would be reflected in different slopes of regression lines, which may 
or may not be significantly different from each other.

4.  Concluding remarks

The application potential of logistic regression in translation studies is just as wide 
as it is for language research at large – in particular, the parallels between transla-
tionese and interlanguage in second language acquisition are more than obvious. 
That is, logistic regression is a most suitable tool whenever we assume

−	 that the translator’s choice for a particular word or structure was determined 
by more than one independent variable; and/or

−	 that the translator was presented with more than one realization of wordings 
or structure in the source language; and/or

−	 the translator chose between more than one alternative word or structure in 
the language being translated into.

In the little case study presented here for illustrative purposes, all three situations 
applied: the ordering of main and subordinate clauses is generally seen as being 
multifactorially determined, and both orderings are possible in both the source 
language (German) and the translated language (English). Other possible applica-
tions of logistic regression (leaving it at German and English as example languages 
here) could be the analysis of such alternations at various levels of linguistic granu-
larity, such as prenominal adjective ordering from, say, German (der rote grosse 
Ball vs. der grosse rote Ball) to English (the red big ball vs. the big red ball) or the 
other way around; the realization of the genitive from English (Stefan’s book vs. the 
book of Stefan) to German (Stefans Buch vs. das Buch vom Stefan) or the other way 
around; or the variable realization of the German infinitival complement structure 
(Steffi fing an zu kochen) in English, where the translator has to make a choice 
between infinitival complements (Steffi began to cook) or gerundial complements 
(Steffi began cooking). Likewise, logistic regression could be employed to topics as 
diverse as synonym choice (English: He was happy ↔ German: Er war froh/glück-
lich/munter/freudig erregt/... or German: Er war froh ↔ English: He was happy/
glad/chipper/in a good mood/...), optional complementizer realization (English: I 
think that the movie is great/I think the movie is great ↔ German: Ich glaube, dass 
der Film gut ist/Ich glaube, der Film ist gut), or attended/unattended demonstra-
tives (English: This paper has shown.../This has shown... ↔ German: Dieser Artikel 
hat gezeigt.../Dies hat gezeigt...), to give but a few examples. All these phenomena 
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have been argued to be multifactorially determined in native language, and more 
recent work confirms that to be true also in second language acquisition; however, 
to our knowledge at least, no such studies exist yet on translated language.

While reasons of space preclude a more detailed discussion, it should be obvi-
ous by now that such regression approaches are a very powerful tool that can help 
uncover patterns that are interesting and would escape the naked eye (or trained 
intuition). With power come challenges, so we strongly encourage the interested 
reader to explore this methodology further. Recently, several statistics textbooks 
for linguists (using R) have been published, all of which cover different regression 
approaches: Baayen (2008), Johnson (2008), and Gries (2009) are good starting 
points, as is the very useful Pampel (2000). More general introductions to statis-
tics and regression are Harrell (2001), Crawley (2007), Gelman & Hill (2008), and 
Hilbe (2009), and while there certainly is a learning curve, the power of such tools 
and their implications for linguistic research should make it worth to anybody 
with a serious interest in rigorous empirical research.
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