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On the basis of a heuristic characterization of intentional blending as a tri-
partite word-formation process, this paper discusses a variety of case studies 
concerned with the effects of similarity and recognizability on the formation 
of blends. More specifically, the case studies focus on (i) the degree of simi-
larity between the two source words that are blended (on different levels of 
linguistic analysis), (ii) the ordering of source words in blends, and (iii) the 
ways in which source words are split up and merged into blends. The case 
studies include comparisons to supposedly related phenomena, viz. speech-
error blends and complex clippings, and extend previous work by proposing 
new, or improving existing, corpus-linguistic operationalizations of relevant 
concepts and by increasing the sample sizes from previous studies.
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1.  Introduction

Blending, the process that underlies the creation of brunch or chunnel from 
breakfast and lunch or channel and tunnel respectively, is one of the most 
perplexing word-formation processes, given that

–	 it is not as rule-governed as derivational processes;
–	 it is not as productive as most derivational processes;
–	 it is more creative than most derivational processes;
–	 it involves conscious effort and word play on the part of the coiner, which 

often results in “violations” of more rigid morphological rules and includes 
the “integration” of many kinds of information that are not central to lin-
guistic study (e.g., the interplay between orthography and pronunciation);

–	 it nevertheless exhibits superficial similarity to other intentional word-
formation processes (e.g., compounding, (complex) clipping, abbrevia-
tions, acronyms);

–	 it has an unplanned counterpart in the form of speech-error blends.
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Given the interaction of all these characteristics, it comes as no surprise that 
some have adopted a somewhat pessimistic stance towards blends:

“in blending, the blender is apparently free to take as much or as little from 
either base as is felt to be necessary or desirable. […] Exactly what the re-
strictions are, however, beyond pronounceability and spellability is far from 
clear.” � (Bauer 1983: 225)

“we find no discernible relationship between phonology […] and a viable 
blend. […] This fact helps to make blends one of the most unpredictable 
categories of word-formation.” � (Cannon 1986: 744)

It is true: blends involve a mind-boggling degree of complexity, and the 
kind of (near-)categorical rules and processes we often find elsewhere in 
morphology are hard to come by. On the other hand, just because blends do 
not exhibit many, if any, categorical rules does not mean that blends are un-
predictable. In fact, most, if not all, linguistic phenomena are not categorical 
in nature, but probabilistic and multifactorial – and so are blends. We should 
therefore adopt a probabilistic approach to the analysis of blends and their 
structure, but we need larger samples than those studied in some of the 
classic studies (e.g., 314 in Pound 1914, 132 in Cannon 1986) and statistical 
methods that can handle probabilistic distributions better than intuition or 
hunches alone.
	 For the purposes of this paper, I will adopt the following relatively uncon-
troversial definition of intentional lexical blends: an intentional fusion of 
typically two (but potentially more) words where a part of a first source word 
(sw1) – usually this part includes the beginning of sw1 – is combined with a 
part of a second source word (sw2) – usually this part includes the end of sw2 – 
where at least one source word is shortened and/or the fusion may involve 
overlap of sw1 and sw2. This definition is intended to distinguish such blends 
from speech-error blends, which are not intentional even though they may 
be experimentally induced, and complex clippings, which involve the con-
catenation of the beginnings of two source words. The data to be studied 
currently include 2329 formations; however, not all of them have already 
been annotated with regard to all the parameters that will be discussed below.
	 In what follows, I will present several case studies regarding what one 
might informally consider the three interrelated “temporal stages” of in-
tentional blending: the selection of the source words to be blended, the (re-
lated) decision for a particular order of these source words in the blend, and 
the (related) decision of how exactly to split up the words and blend them. 
This division of blending into three different stages is of course somewhat 
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artificial and not intended as a characterization that is isomorphic to the actual 
psycholinguistic processes, but it is nevertheless a convenient heuristic to 
approach the phenomenon. The case studies to be discussed here involve 
(non-standard) elements from many different levels of linguistic analysis:

–	 graphemes and phonemes;
–	 graphemic and phonemic n-grams;
–	 syllables and their stress patterns;
–	 words, their lengths, frequencies (and semantics).

Crucially, I will argue and exemplify that the study of these aspects of 
intentional blends requires that blends be compared to other intentional 
word-formation processes as well as (randomly generated) baselines. In ad-
dition, I will argue that intentional blend formation involves an interplay of 
phonemic/graphemic/… similarity on the one hand as well recognizability 
on the other. Some of the case studies to be discussed are replications of 
previous work on the basis of a now larger data set, but others will be new 
or, maybe even more importantly, illustrate that the field is still at a stage 
where methodological fine-tuning is required by demonstrating that not all 
previous studies, including my own, have succeeded in operationalizing the 
relevant parameters optimally.

2.  The selection of the source words

When it comes to selecting the words to be blended, a variety of studies 
have shown that the source words speakers choose to blend are similar to 
each other. This is true of speech-error blends’ phonological characteristics 
(MacKay 1987; Kubozono 1990), syntactic/POS characteristics (MacKay 
1987; Berg 1998), and their semantic characteristics (Levelt 1989; Berg 1998), 
but it is also true of the intentional blends focused on here most (Kubozono 
1990; Kelly 1998; Gries 2004a–c). However, there are many ways in which 
words can be similar to each other (lengths (of different types of units), 
frequency/dispersion, phonemes, graphemes, syllables, stress patterns, se-
mantics, etc.) and different ways in which each of these similarities can be 
operationalized. In addition, when it comes to, say, phonemic/graphemic 
similarity, source words may be similar to each other in different parts of the 
words. Finally, similarity measures of all of the above kinds must always be 
compared against expected/random baselines so as to make sure that what-
ever similarity value is obtained is not squarely within the range of chance 
values. In this paper, I will report on several small case studies, each of which 
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is concerned with a different facet of word similarity and supersedes earlier 
work on this in terms of the amount of data covered and/or in terms of how 
the data are studied and evaluated.

2.1.  The lengths of source words

First, let us explore the lengths of source words of three different kinds of 
blends: authentic error blends (i.e., unplanned lapses that happened to have 
been overheard and that were quoted in psycholinguistic studies), induced 
error blends (i.e., unplanned lapses that were induced in published experi-
mental studies) and intentional word-formation blends (compiled from pub-
lished studies as well as by the author). Previous studies have argued that, 
in intentional blends, sw1 is shorter than sw2 (cf. Kelly 1998; Gries 2004c) 
while, in authentic errors, the reverse tendency was obtained (cf. MacKay 
1973 on German error blends). To replicate these findings, I counted for 
both source words the numbers of syllables, phonemes and graphemes (for 
intentional blends only) and compared their average lengths (as independent 
samples); the results are represented in the three panels of Table 1.

Table 1.  Medians and interquartile ranges (in parentheses) of lengths of blend types

authentic error blends (186)

syllables phonemes letters

sw1 2 (1, 2) 5 (4, 7)
sw2 2 (1, 2) 5 (4, 6)
pU-test > 0.79 > 0.47

induced error blends (32)

syllables phonemes letters

sw1 3 (2, 4) 8 (6, 9)
sw2 3 (2.75, 4) 8 (6.75, 9)
pU-test > 0.92 > 0.97

intentional blends (1921)

syllables phonemes letters

sw1 2 (1, 3) 5 (4, 7) 6 (4, 8)
sw2 2 (3, 3) 7 (5, 8) 7 (6, 9)
pU-test < 0.001 < 0.001 < 0.001
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The lengths of the source words of both kinds of error blends are not sig-
nificantly different from each other (when averaged across blends), which 
is not compatible with MacKay’s above finding. On the other hand, the 
source words of intentional blends behave differently from the source words 
of errors and exhibit a significant difference that is compatible with earlier 
findings: in every comparison, sw1 is shorter than sw2.

2.2.  The frequencies of source words

A similar picture emerges from the second case study, which is concerned 
with the frequencies of the source words. Kelly’s (1998) data on intentional 
blends suggested that in intentional blends sw1 is more frequent than sw2 
whereas MacKay’s (1973) data on (German) error blends suggest that the 
two source words do not differ with regard to their frequencies. The cur-
rent data yield compatible results in independent-sample comparisons. For 
each source word of the three blend types, I retrieved its frequency in the 
Reuters corpus, a corpus of 800,000+ newswire stories (cf. <http://trec.nist.
gov/data/reuters/reuters.html> and Lewis et al. 2004). The results are shown 
in the three panels in Table 2: as expected, the source words of both types of 
error blends do not differ significantly whereas in intentional blends sw1 is 
significantly more frequent than sw2.

Table 2.	 Medians and interquartile ranges (in parentheses) of log10 frequencies of 
blend types

authentic error blends (186)

sw1 3.05 (2.2, 4.05)
sw2 3.11 (1.84, 4.09)
pU-test > 0.7

induced error blends (32)

sw1 2.68 (1.57, 3.33)
sw2 2.8 (1.09, 3.24)
pU-test > 0.88

intentional blends (1939)

sw1 2.91 (1.96, 3.68)
sw2 2.55 (1.54, 3.48)
pU-test < 0.001
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2.3.  The overall similarity of source words to each other

The third case study is concerned with the phonemic similarities of source 
words of blends to each other. As mentioned before, previous work (e.g., 
Gries 2004b-c, 2006) has discovered that source words of intentional and 
error blends are more similar to each other than expected by chance and that 
the source words of blends are more similar to each other than those of com-
plex clippings. However, these studies have not compared different kinds of 
blends to each other or, if they did, only used a bigram-based measure ((X)
Dice). In this study, I will use a more sophisticated measure – string-edit 
distance – and study a larger set of blends to try to replicate the previous 
findings. For all pairs of source words of the three types of blends already 
studied above, I computed phonemic Levenshtein string-edit distances, 
which is a metric based on the number of operations (insertions, deletions, 
and substitutions) needed to change one word into another. As a control 
condition, I also included all pairwise similarities of 100 randomly sampled 
words’ pronunciations from the CELEX database. The distributions of the 
string-edit distances are represented in Figure 1 in the form of cumulative 
distribution functions.
	 As one would have hoped for, the similarities of the random word pairs 
is smallest (because their distances are largest), and Kolmogorov-Smirnov 
tests show that they differ significantly from the other source word pairs (all 
these p’s<0.03). Also, the source words of authentic error blends exhibit the 
highest similarity to each other, which is compatible with previous findings. 
The source words of intentional blends occupy a middle ground, and while 
nearly all curves differ significantly from each other (all these p’s<0.006), 
the source words of intentional blends do not differ significantly from those 
of induced errors (p>0.89). In other words, the experimenters’ choices of 
source words of induced errors were very different from the authentic errors 
they were supposedly intended to represent, but much more like the inten-
tional blends, which most other case studies show are quite different from 
errors. This is yet another piece of evidence cautioning us to be very careful 
about generalizations regarding blending that are based on experimentally 
induced errors.

2.4.  The locus of similarity of source words

Another question that arises in this context is where the source words are 
similar to each other. For example, it is obvious that the similarity of channel 
and tunnel is strongest at the end of the words, but it is less obvious whether 
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different kinds of blends behave alike in this regard. Gries (2004c) explored 
this issue, but only in a coarse-grained fashion, namely by checking whether 
the overlap of source words occurred only/mainly around the breakpoint or not. 
His results suggested that the similarity of error blends was more global than 
that of intentional blends. In this paper, I will revisit the issue in more detail.
	 For all authentic errors, intentional blends and complex clippings, I

–	 generated all possible substrings of the two source words (i.e., for tunnel 
this yields {t, u, n, n, e, l, tu, un, nn, ne, el, tun, unn, nne, nel, tunn, unne, 
nnel, tunne, unnel, tunnel};

–	 computed a position index for each substring that indicates on a scale 
from 0 to 1 where in the word the substring is located. For example, the 
trigram substrings tun, unn, nne, and nel of tunnel received the position 
indices 0, 1/3, 2/3 and 1 respectively;

–	 determined for all substrings of a source word whether they occurred in 
the other source word, too, and for those substrings that did overlap, I 
computed the mean of their position indices, which therefore indicates 
where the two words share most of their material.

For the comparison of channel to tunnel, this resulted in the value of 0.815, 
i.e., the end part of the word, namely where “nnel” is located. Then, I com-
pared these values for all authentic error blends, all intentional blends and 

Figure 1.		Cumulative distribution functions of similarities of source words of three 
types of blends as well as 4950 random word pairs
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all complex clippings and plotted the results for all source words that are 
not completely dissimilar into Figure 2. In this graph, results for complex 
clippings, authentic error blends and intentional blends are indicated in light 
grey, dark grey and black respectively, such that the position in source words 
is represented on the x-axis (i.e., the beginnings and ends of source words 
are at x=0 and x=1 respectively) and the bars indicate on the y-axis the per-
centages of blends that exhibit a particular mean position index.
	 The results show that, with regard to where their source words are similar, 
intentional blends differ from error blends (whose similarity of the source 
words is more widespread across the words while that of the source words 
of intentional blends is more narrowly concentrated around the middle and 
end of the word: D=0.1159, p=0.0015) as well as from complex clippings 
(whose similarity is located earlier in the words than in intentional blends; 
D=0.1293, p=0.0087).

2.5.  The stress patterns of source words

As was shown above in Section 2.1, source words of intentional blends are 
similar to each other in terms of their syllabic lengths. However, the simi-
larity goes even further. On the basis of a smaller data set than in the present 

Figure 2.		Mean within-word locations of shared substrings (between 0=beginning 
and 1=end) of complex clippings, authentic error blends and intentional 
blends
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Figure 3.		Cross-tabulation plots for source words’ stress patterns: 2-syllable source 
words (top panel, pexact test< 0.001), 3-syllable source words (center panel, 
pexact test< 0.001), 4-syllable source words (bottom panel, pexact test< 0.02)
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article, Gries (2004b) has illustrated how source words of intentional blends 
that have the same numbers of syllables also tend to have the same stress pat-
terns. To test this result on the basis of the present larger data set, in addition 
to the syllabic lengths of both source words from above I also identified the 
stress patterns of the words, i.e., whether each syllable had primary stress 
(“s”) or not (“u”). For example, webinar (web * seminar) was annotated as “s” 
for web and “s-u-u” for seminar, jokelore ( joke * folklore) as “s” and “s-u”, 
transponder (transmission * responder) as “u-s-u” and “u-s-u”, etc. Then, 
for each set of blends consisting of two equally long source words, I counted 
which stress patterns of sw1 were attested with sw2. The results are repre-
sented in the three panels of Figure 3 by means of cross-tabulation plots (cf. 
Gries 2009). These plots are essentially frequency tables, but frequencies 
that are larger than expected by chance are printed in black and followed 
by “(+)”, frequencies that are smaller than expected by chance are printed 
in grey and followed by “(-)”, and the physical font size directly represents 
the size of the deviation of the observed frequencies from the expected ones 
(based on Pearson residuals).
	 As is obvious from the overrepresented numbers in the diagonal from 
the bottom left to the top right corner, when the source words of intentional 
blends have the same number of syllables, then there is also a significant 
tendency for them to have the same stress pattern.

2.6.  The semantics of source words

In this section, I will briefly (and preliminarily) explore the semantic rela-
tionships between the source words of authentic error blends, induced error 
blends, intentional word-formation blends and complex clippings. In a first 
analysis of a subset of the whole data set, the semantic relationships between 
the pairs of source words of 647 forms were classified into the following 
categories, most of which have been mentioned in previous studies:

–	 synonymy, as for deliberal (deliberate * intentional), redupeat (redupli-
cate * repeat), or tummach (tummy * stomach);

–	 co-hyponymy, as for magalogue (publications: magazine * catalogue), 
beefcake (food items: beef * cheesecake), or Frenglish (languages: French 
* English);

–	 contractive, i.e., when the blend contracts two source words that would 
have been adjacent as in a compound, as for carjacking (car * hijacking), 
skurfing (sky * surfing), or scifi (science * fiction);
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–	 frame relation, as for confrotalk (confrontation * talk), letterzine (letter * 
magazine), or riverscape (river * landscape);

–	 other (e.g., antonymy, derivation, etc.).

The cross-tabulation of the four types of processes and the five semantic 
relationships is represented in Figure 4. As is obvious, the data differ highly 
significantly from chance (χ2=211.07; df=12, p<0.001, Cramer’s V=0.33) and 
three very clear classes emerge: error blends are characterized very much by 
their source words being synonyms, and the intentional error blends, where 
of course researchers chose the source words, unsurprisingly exhibit the 
same tendency. Intentional blends, on the other hand, involve very many 
different semantic relationships: while synonyms occur less frequently than 
expected, they do occur, and all other semantic relationships coded for here 
are more frequent than expected. Finally, complex clippings have quite a 
strong preference to involve contractive relations. In other words, intentional 
blends differ markedly from the other categories, viz. both types of errors 
and complex clippings.

Figure 4.  Cross-tabulation plots for source words’ semantic relations

2.7.  Interim summary

The findings shed some doubt on previous explicit claims and implicit as-
sumptions. Not only do authentic error blends sometimes behave very differ-
ently from induced error blends (for instance, with regard to their phonemic 
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similarity), both types of error blends sometimes also differ significantly 
from intentional error blends (for instance, with regard to their source words’ 
lengths, frequencies, their distribution of similarity over words, and the 
semantic relation between the source words). Thus, experimental findings 
from induced error blends may not fully apply to naturalistic errors, and, 
likewise and contra Kubozono (1990) and Berg (1998), findings from and 
conclusions based on error blends may not fully apply to intentional errors.

3.	 The ordering of the source words

Section 2 has shown that the source words that enter into blends are rather 
similar to each other in a variety of ways. However, especially for inten-
tional blends of course, once the blend coiner has decided on the words to be 
blended, the question arises of how they are ordered – which source word’s 
contribution comes first and which comes second. Unsurprisingly, one ob-
vious determinant of this process is semantic headedness, as demonstrated 
by Renner (2010). In this section, I will very briefly explore that question 
by returning to two variables already explored – lengths and frequencies of 
source words –, but while the above comparison of sw1 and sw2 has lumped 
all source words in positions 1 and 2 together, here I will perform pairwise – 
in other words, blendwise – comparisons of both source words.

3.1.	 Pairwise source word comparisons (in terms of lengths)

In Section 2.1 above, we have seen that the median length of sw1 of error 
blends is not significantly different from the median length of sw2 regardless 
of how we measure length. However, the non-pairwise computation may 
mask effects on the level of the individual words and in this section we will 
therefore compare the lengths of the source words pairwise, i.e., for each 
error blend. More specifically, for all authentic error blends, I computed the 
differences length sw1 minus length sw2 and sorted them by their size, and 
I did this for their syllabic and phonemic lengths. Then, these sorted results 
were plotted for each type of length such that the sorted differences are 
represented on the y-axes; all differences smaller/greater than 0 – i.e., where 
sw1 is shorter/longer than sw2 – were plotted in black/grey respectively, 
and a paired Wilcoxon test was computed to determine whether or not any 
differences were significant. The results for the authentic error blends are 
represented in the panels of Figure 5.
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Figure 5.		Sorted pairwise length differences for authentic error blends: syllabic 
lengths (left panel), phonemic lengths (right panel)

It is obvious that the pairwise differences are relatively symmetrically dis-
tributed around 0, and the p-values of the pairwise Wilcoxon tests show that 
the source words of error blends do not differ significantly; the same insig-
nificant results were obtained with blends involving synonyms only, where 
headedness might well play less of a role (thanks to Laurie Bauer for suggesting 
this test). But what about the intentional blends, where one also needs to include 
graphemic lengths? The results of the analogous computations are repre-
sented in Figure 6. The plots already indicate what the p-values then confirm: 
In all three comparisons, sw2 turns out to be highly significantly longer than 
sw1, namely about half a syllable and one phoneme or grapheme; the same 
significant results were obtained with blends involving synonyms only.

Figure 6.	 Sorted pairwise length differences for intentional blends: syllabic lengths 
(left panel), phonemic lengths (center panel), graphemic lengths (right panel)
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3.2.  Pairwise source word comparisons (in terms of frequencies)

In the same way that Section 3.1 discussed the pairwise test of data from 
Section 2.1, here, I will very briefly summarize the results of the pairwise 
comparisons of source word frequencies for authentic error blends, induced 
error blends and intentional blends. Consider Figure 7.

Figure 7.		Sorted pairwise frequency differences for authentic error blends (left 
panel), induced error blends (center panel), intentional blends (right panel)

The results from the pairwise comparison partially support the coarser ap-
proach from above: in error blends, the source words are equally frequent, 
but in intentional blends, sw2 is significantly less frequent. (Since frequencies 
are sometimes misleading (cf. Gries 2008), I also tested whether the source 
words of the three types of blends differed in terms of their dispersion, but 
the results from the above frequency tests were supported.)

3.3.  Interim summary

The results of the pairwise comparisons of source words regarding the or-
dering of the source words are unambiguous and are compatible with the 
more coarse-grained results concerned with their selection. For error blends, 
sw1 and sw2 do not differ with regard to their lengths and frequencies while 
for intentional blends, sw1 is shorter and more frequent (and more evenly dis-
persed) than sw2. As above, this is in contrast to some previous studies and 
should caution us against prematurely lumping error blends and intentional 
blends together.
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4. 	 The blending of the source words

The final aspect of blending to be considered here is how two source words 
are blended after they have been chosen (which we dealt with briefly in 
Section 2) and after their ordering has been decided on (which we dealt 
with briefly in Section 3). (Again, this division into stages is no more than 
a convenient heuristic; no psychological/psycholinguistic significance is at-
tached to it.)

4.1.	 The similarity of source words to the blend

In previous work, I argued that blends are coined under the influence of two 
opposing factors, similarity and recognizability, and the previous sections 
have already dealt with similarity of source words on various levels. The 
question that may arise, however, is whether similarity and recognizability 
would be opposing rather than correlated factors. The answer to this ques-
tion is that similarity as I use the term here is concerned with the similarity 
of the source words to each other while I use recognizability to refer to how 
recognizable the source words are from the blend. This is of course also a 
function of the similarity of the blend to the source words, but in a different 
way. This is because, obviously, the two source words of a blend would be 
most recognizable if nearly all of their material were present in the blend, as 
in the examples in (1).

(1)		 a.	 Chevrolet * Cadillac	 →	 Chevrolecadillac
		  b.	 Cadillac * Chevrolet	 →	 Cadillachevrolet

However, such blends are extremely unlikely – especially if they do not 
involve any overlapping sounds/letters – because they are not fun anymore: 
while both source words are perfectly recognizable, the blend is not too 
similar to either source word anymore and the punning/playful character 
of such blends is largely lost. Ideally, we would have a way to quantify the 
degree to which a blend strikes a balance between these two forces.

In previous work (e.g., Gries 2004b), I proposed a similarity index SI 
to quantify the similarity of the two source words to the blend. This SI, as 
computed in (2), was intended to be high / close to 1 if both source words 
were highly similar to the blends and low / close to zero if the source words 
were not similar to the resulting blend anymore (el. stands for elements).
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(2)		

For example, 6/7 letters of channel make up 6/7 letters of chunnel, and 5/6 
letters of tunnel make up 5/7 letters of chunnel; SIG chunnel = 0.665. This 
seemed like a good idea at the time because, for instance, it made sense 
intuitively that chunnel should score a high value, that brunch should score 
relatively low (SIG brunch = 0.304), and that the hypothetical blend break-
funch, in which breakfast is much more recognizable than in brunch, should 
score a better value that brunch (SIG breakfunch = 0.36). However, while the 
initial results discussed in Gries (2004b) were encouraging, it turns out there 
are also more problematic results:

(3)		 a.	 Chevrolet * Cadillac	 →	 Chevrolac		
	 (SIG = 0.414)

		  b.	 Cadillac * Chevrolet	 →	 Cadillet			 
	 (SIG = 0.344)

(4)		 a.	 Chevrolet * Cadillac	 →	 Chevrolecaddillac		
	 (SIG = 0.472)

		  b.	 Cadillac * Chevrolet	 →	 Cadillachevrolet		
	 (SIG = 0.531)

It is reasonable to assume that Chevrolac and Cadillet would be better blends 
than those in (4), but the SI-values do not reflect that sufficiently well. Thus, 
obviously, the proposed SI captures some of what is going on in terms of rec-
ognizability, but it does not penalize enough blends which, while boosting 
recognizability, are too dissimilar to their source words. I would therefore 
like to propose to instead use the average of the Levenshtein string edit 
distances (cf. Левенштейн 1966) between both source words and the blend 
(ASED). This measure provides results that are more compatible with what 
speakers’ intuitions would suggest, as is obvious from (5) to (7).

(5)		 a.	 channel * tunnel	 →	 chunnel			
	 (ASED = 1.5)
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		  b.	 channel → chunnel		  1 (1 substitution)
			   tunnel → chunnel		  2 (1 del. + 1 subst.)

(6)		 a.	 Chevrolet * Cadillac	 →	 Chevrolac		
	 (ASED = 3.5)

		  b.	 Cadillac * Chevrolet	 →	 Cadillet			
	 (ASED = 3.5)

(7)		 a.	 Chevrolet * Cadillac	 →	 Chevrolecadillac		
	 (ASED = 8)

		  b.	 Cadillac * Chevrolet	 →	 Cadillachevrolet		
	 (ASED = 7.5)

That is, as expected, chunnel scores a low value (for high similarity, cf. (5)), 
Chevrolac and Cadillet score slightly higher values (for less similarity, cf. 
(6)), and Chevrolecadillac and Cadillachevrolet score even higher values 
(for much less similarity, cf. (7)). Note that ASED is also preferable theoreti-
cally since we can then use the same type of measure – string-edit distances 

– for both comparisons: source word to source word (cf. Section 2.3) and 
source words to blends (here).

To replicate the previous work with the new and arguably more appro-
priate similarity measure, I computed ASEDs for all error blends in my data 
set (both authentic and induced), intentional blends and complex clippings, 
as well as 144 simulated blends, which were created by blending six words 
in all phonologically possible ways. The results were highly significant ac-
cording to an ANOVA (adjusted R2=0.17; F4, 2394=121.6; p<0.001) and are 
summarized in Figure 8.

Figure 8.  ASEDs as a function of the formation process
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The results are very clear and interesting: authentic error blends are most 
similar to their source words. The two blend types which involve conscious 
choices and blending of source words – induced errors and intentional 
blends – involve significantly less similarity, which is another piece of evi-
dence for the fact that, even though researchers choose source words for 
induced error blends that are comparable to authentic errors in terms of their 
lengths, frequencies, and semantic relations, the way they are blended still 
results in somewhat different formations; the results from Figure 8 also lend 
additional post hoc support to the results from Figure 2 in Section 2.4 regar-
ding the location of similarity: if the similarity is distributed more globally 
in the source words of error blends than in those of intentional blends, then 
one would expect that error blends can be characterized by a higher degree 
of similarity to their source words. The intentional blends on the other hand 
mostly exploit similarity in the middle of the word, where the source words 
are split up (often around overlapping material), and hence their overall 
similarity to their source words is lower, but still significantly higher than 
in the simulated blends, which served as a control group of sorts. The least 
amount of similarity by far is found between the source words of simulated 
blends and complex clippings, which supports previous findings testifying 
to how blends are different from complex clippings (cf., e.g., Gries 2006).

4.2.  The point where source words are split up

The previous sections have shown that error blends, intentional blends and 
complex clippings differ in terms of how similar they are to their source 
words and how the similarity is distributed across words. What still requires 
further study is the question of where words are split up into parts. The 
most detailed study in this regard is perhaps Gries (2006), where I explored 
how blend coiners have a significant tendency to split up source words near 
their psycholinguistically defined uniqueness points, which in turn were 
operationalized corpus-linguistically. More precisely, the uniqueness point 
of a word w was approximated as a so-called selection point SP, which is the 
point after a part of w where w is the most frequent word with that part (in 
the British National Corpus). A comparison of intentional blends and com-
plex clippings showed that coiners of intentional blends split up sw1 nearly 
exactly at the selection point and sw2 half a phoneme too early (on average) 
whereas coiners of complex clippings split up source words much earlier 
(and thus, less optimally than expected in terms of recognition). This was an 
interesting finding because it showed how psycholinguistically-motivated 
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determinants can shed light on a complex multifactorial process that has 
long defied characterization.

Another interesting avenue for exploration, however, is where the splits 
are made in terms of phonological units. For example, do the different forma-
tion processes differ with regard to whether splits occur within or between 
syllables, at onset-rime or body-code divisions, etc.? In order to explore this 
question, I cross-tabulated split-point locations of both sw1 and sw2 for the 
annotated sections of error blends, complex clippings and intentional blends 
in my data set; consider Figure 9 for the results.

�

Figure 9.		Split point locations for different formation processes: sw1 (top panel) 
and sw2 (bottom panel)
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For sw1, there is a significant difference from chance (χ2=132.79; df=8, 
p<0.001, Cramer’s V=0.18): error blends “prefer” splits between onset and 
rime as well as between body and coda, complex clippings involve surpris-
ingly many splits in the onsets that are consonant clusters, and intentional 
error blends have a strong preference for syllable splits. On the whole, the 
results are similar for sw2. Again, there is a significant distribution (χ2=133; 
df=8, p<0.001, Cramer’s V=0.18) and the only difference to the data for sw1 
is that, for sw2, complex clippings prefer onset-rime splits much more than 
for sw1. Nevertheless, it is very obvious that the three processes differ mark-
edly from each other.

5.  Concluding remarks

Given the results of the above case studies as well as those of previous 
studies, how does the production of intentional blends happen? A not totally 
serious but still heuristically useful answer would be the following:

–	 source word selection: a speaker chooses two source words which can 
communicate what the new formation is supposed to express and are sim-
ilar to each other in terms of phonemic and/or graphemic length, stress 
pattern as well as semantics;

–	 source word ordering: the speaker orders the word so that he either leaves 
them in the modifier-head order in which they occur anyway or estab-
lishes some such structure himself or puts the shorter and more frequent 
word first;

–	 source word blending: the speaker cuts the words up at a syllable boundary 
close to the uniqueness/selection point, fuses them (and uses more of sw2 
in that process) so as to maximize overlap in the middle of the fusion 
section and maximize phonemic/graphemic similarity elsewhere as much 
as is still possible, and creates a blend that is more similar to sw2, which 
often is the blend’s head.

This process will of course be recursive: speakers will consider some words 
to blend because of their semantics, but will discard them because they 
are too dissimilar and provide less opportunity for punning overlap than 
alternative candidate source words. As a purely hypothetical example, the 
first speaker to ever say foolosopher may have discarded moronosopher 
or moronopher or idiosopher or idiotosopher because they result in stress 
clashes and less humorous exploitation of phonological similarity. This sche-
matic process also indicates how different intentional blends are from both 
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complex clippings and authentic error blends, which in turn are somewhat 
different from induced error blends. Occasional similarities between the 
four processes must not detract from the fact that for nearly every parameter 
that was studied here significant differences were obtained and, thus, make 
a strong case for treating all four processes in their own right.

While we are beginning to develop a better understanding of how 
blending functions, many more steps and improvements are necessary. Some 
of these improvements are quite obvious: we need larger databases of blends 
and we need more comprehensive descriptions of the patterns they exhibit. 
Somewhat less trivially, we need a variety of better methods which in turn 
will improve our descriptions. Given the key role played by similarity and 
recognizability, most pressing is the need for more flexible and more com-
prehensive measures of word similarity. More specifically, everything that 
has been done so far focused on one particular level of resolution: phonemes, 
graphemes, syllables, and so on. However, this is obviously not how speakers 
perceive words – naïve speakers have a much more holistic approach, which 
is why we need measures that allow us to capture and quantify similarity at 
many different levels at the same time. Consider again channel and tunnel:

–	 with regard to articulatory features, the two are quite similar even when 
the phonemes are not the same (as in their first sounds, /ʧ/ vs. /t/);

–	 with regard to phonemes and graphemes, they are similar, and they can be 
blended so that much of that similarity is preserved;

–	 with regard to CV segments, they are identical – CVCVC –, and they can 
be blended so that their similarity is preserved;

–	 with regard to syllable length, they are identical, and they can be blended 
so that much of their similarity is preserved;

–	 with regard to stress patterns, they are identical, and they can be blended 
so that much of that similarity is preserved.

–	 with regard to their parts of speech, they are identical; etc.

But how do we integrate the information from all these levels? And how do 
we treat cases where the two source words have different syllabic lengths but 
both are stressed on the first syllable? And what do we do with unstressed 
vowels such as the vowel before the /n/ in impostinator – is this a /ə/ or a 
/ɪ/ or, since both will be completely unstressed here, do we even want to 
consider them separately? These are all tricky and as yet unanswered ques-
tions, but once we come closer to answering them, we will be able to make 
better comparisons between the source words of blends (and similar word-
formation processes) as well as the similarities of source words to blends, to 
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determine more precisely what the contributions of source words are (which 
is especially difficult when we turn to discontinuous contributions of source 
words, as in ambidextrous * sex → ambisextrous or carnibbleous * car-
nivorous → nibble), to address more comprehensively the location of cut-off 
points, etc. One of the very first steps that could be taken is to extend the 
computation of Levenshtein distances such that they can involve mappings 
of phonemes/graphemes to handle phoneme/grapheme alternatives, but this 
is of course only the very first of many steps.

On a more general level, I think we need to leave behind purely descrip-
tive linguistic accounts and turn to psycholinguistic concepts, notions and 
methods instead. While my previous work and the above have hopefully 
already constituted first steps in that direction, much more needs to be 
done. With regard to corpus-based approaches, notions such as neighbor-
hood density – which is related to my approach to recognition/uniqueness 
points from above – will be useful to explore how source words are chosen 
from a candidate set and how they are blended. With regard to experimental 
approaches, it would be interesting to have speakers coin blends of source 
words while controlling for many of the factors known to influence blending. 
Theoretically, this may also lead to, or at least underscore the need for, a 
more flexible approach to the taxonomy/classification of word-formation 
processes, quite possibly a prototype approach of the type argued for by 
López Rúa (2002).

In spite of the huge task still ahead of us, one thing is already safe to say: 
blends are far from unpredictable and their characteristics are not only iden-
tifiable using larger databases, reference corpora and statistical techniques 
(including baseline comparisons), but also firmly grounded in cognitive, but 
ultimately psycholinguistic and probabilistic mechanisms.
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