
This is a section of doi:10.7551/mitpress/12200.001.0001

The Open Handbook of Linguistic Data Management

Edited By: Andrea L. Berez-Kroeker, Bradley McDonnell, Eve Koller,
Lauren B. Collister

Citation:
The Open Handbook of Linguistic Data Management
Edited By:
DOI:
ISBN (electronic):
Publisher:
Published:

Andrea L. Berez-Kroeker, Bradley McDonnell, Eve Koller, Lauren B. Collister

The MIT Press
2022

10.7551/mitpress/12200.001.0001
9780262366076

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1980022/c035100_9780262366076.pdf by guest on 04 January 2022

https://doi.org/10.7551/mitpress/12200.001.0001

for the first one involving mixed-effects regression model-

ing). However, even if this alternation is fairly well under-

stood by now, this example is still instructive for a variety

of reasons:

•	 The BNC has been one of the most widely used corpora.

•	 Its XML annotation is fairly comprehensive and, on

the morphosyntactic side of things, includes part-of-

speech tags, some multi-word annotation, and lemma

annotation.

•	 Its annotation does not include syntactic parse trees.

Given the BNC’s annotation scheme and the absence

of syntactic parses, retrieving syntactic constructions of

the above-mentioned kind from the BNC is typically

not possible in a fully automatic way and, therefore,

involves the following, quite common corpus-linguistic

search process, which will be discussed in what follows.

The user begins by running a query/search that is

based on as much existing annotation as possible, here

words/lemmas and parts of speech. For a study of the

dative alternation, we will imagine that we want to

find all instances of the dative alternation (with to) that

involve one of the following ten verb lemmas that are

frequently used in the dative alternation:

•	 Four verb lemmas that strongly prefer the ditransi-

tive: tell, give, show, and ask.

•	 Three verb lemmas that strongly prefer the preposi-

tional dative: bring, sell, and pass.

•	 Three verb lemmas that are relatively neutral with

regard to the two constructions: send, lend, and write.

These preferences are based on Gries and Stefanowitsch

(2004).

If the part-of-speech and lemma annotation is per-

fect (which would mean that instances of show or shows

used as nouns would not be retrieved), a query/search

for these verb lemmas will lead to perfect recall for these

1  Introduction

This chapter discusses data management and prepara-

tion issues that would arise in a fictitious corpus study

using data from the British National Corpus World XML

edition (BNC; BNC Consortium 2001); for overview and

discussion of corpus linguistics as a field and its relation

to notions such as theory and method, see the 2010 spe-

cial issue of the International Journal of Corpus Linguistics

(Pope 2010) and McEnery and Hardie (2011). This corpus

consists of approximately 100 million words—4,049 files

with 10 million words from spoken and 90 million words

from written data—that were compiled to represent Brit-

ish English of the 1980s and is by now downloadable for

free from the Oxford Text Archive (http://ota​.ox​.ac​.uk​

/desc​/2554). Specifically, for this chapter, I am discuss-

ing a hypothetical study of the so-called dative alterna-

tion between a ditransitive construction as in (1a) and

the often-available prepositional dative with to in (1b); we

will restrict our attention to sentences in the active voice.

(1)	 a.	� Captain Picard gave Commander Data a new

phaser.

b.	 Captain Picard gave a new phaser to Com-

mander Data.

To study this kind of alternation, a corpus-linguistic

analysis would typically begin from a concordance display

that shows instances of each construction in context, as

shown in a screenshot in the appendix. This is so that the

user can read each example and annotate it for the large

number of variables that seem to jointly affect the dative

alternation. These include, but are not limited to, mor-

phological, syntactic, semantic, information-structural,

psycholinguistic, and other factors and have been identi-

fied in a large number of corpus-linguistic and quantita-

tive studies of this alternation (see Gries 2003 for one of

the earliest multifactorial studies and Bresnan et al. 2007

38  Managing Synchronic Corpus Data with the British National Corpus (BNC)

Stefan Th. Gries

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1980022/c035100_9780262366076.pdf by guest on 04 January 2022

http://ota.ox.ac.uk/desc/2554
http://ota.ox.ac.uk/desc/2554

454	 Gries

an utterance tag with a who attribute–value pair mark-

ing the speaker; <s> is a sentence number tag; <c> is a

punctuation mark tag; and <w> is a word tag with two

part-of-speech tags (a fine-grained “c5” version and a

coarse-grained “pos” version) and a lemma tag (“hw” for

head word). The corpus files are in UTF-8 encoding.

The BNC can be accessed online and with a variety

of (free and commercial) corpus-processing tools, but

these options restrict the analyst’s freedom too much,

so the best way to process corpus data is operating on

a downloaded version with a programming language;

many people are using Python, but I personally find R (R

Core Team 2019) to be the altogether better choice (and

Gries 2016 provides a detailed book-length introduction

to corpus/text processing with R).

Recall, the task is to create a concordance of the ten

above-mentioned verb lemmas from all of the BNC.

There are two main ways this text processing/retrieval

task can be approached in R: one is applying regular

expressions to the files on a line-by-line basis, and the

other is using packages such as XML (Lang & the CRAN

Team 2019) or xml2 (Wickham, Hester, & Ooms 2018)

that utilize the complete XML markup tree structure.

In many cases, however, we want to retrieve the data

in a way that maximally facilitates subsequent data

ten verb lemmas with a user-defined context such as,

for now, the complete sentence in which they are used.

All their uses will be found and thus all their uses in

the dative alternation (in corpora other than the BNC

such as learner corpora, the user might have to deal with

misspellings and other things). However, this result, the

concordance lines, will come with fairly bad precision:

all the verbs’ uses will be found, in other words, also all

uses in intransitive or monotransitive constructions or

in phrasal verbs, prepositional verbs, and so on. Thus,

the second step is to go over the concordance lines and

prepare them for two kinds of annotation.

The first kind of annotation serves to identify false

positives in the search result: that is, to identify the hits

that involve the verbs but not the constructions in ques-

tion so that we know which search results not to anno-

tate for linguistic/contextual variables. However, given

the size of the BNC and the relatively high frequencies of

these verbs, we will not want to read all hits returned by

the search, but only a subset/sample of them, and I will

discuss ways to arrive at such a subset/sample (sections 2

and 3). Once the true positives—uses of forms of the verb

lemmas that instantiate one of the two constructions—

have been identified, the second kind of annotation is

to (also usually manually) annotate each constructional

use for the linguistic/contextual variables whose effect

on the dative alternation is to be studied and to do that

in such a way that facilitates subsequent statistical anal-

ysis; this part of the process is often partially outsourced

to research assistants, which has some implications for

the data management (section 3).

The final step in the process leading up to the actual

analysis is to do some final checking and preparatory steps

for the following statistical analysis (section 4). However,

to make the whole endeavor as precise, consistent, and

replicable as possible, I will make a variety of suggestions

for this along the way; admittedly, some of these are gen-

eral best practices for the management of corpus data and

do not only apply to studies based on the BNC.

2  Retrieval

The first step of data management is to extract a first

version of the concordance lines from, here, the BNC.

The relevant part of the annotation of the corpus is rep-

resented in example 38.1 (see Han, chapter 6, this vol-

ume for more discussion of annotation) in which <u> is

<u who=“D8YPS006”>

<s n=“80”><w c5=“CJC” hw=“and” pos=“CONJ”>And

</w><w c5=“UNC” hw=“erm” pos=“UNC”>erm </w><pause/><w

c5=“DT0” hw=“that” pos=“ADJ”>that </w>

<w c5=“VBD” hw=“be” pos=“VERB”>was </w><w c5=“VVN“

hw=“consider” pos=“VERB”>considered</w><c

c5=“PUN”>.</c></s>

</u>

<u who=“D8YPS002”>

<s n=“81”><w c5=“ITJ” hw=“yes” pos=“INTERJ”>Yes </w><w

c5=“CJS” hw=“if” pos=“CONJ”>if </w><w c5=“PNP”

hw=“you” pos=“PRON”>you </w>

<w c5=“VVD-VVN” hw=“look” pos=“VERB”>looked </w><w

c5=“PRP” hw=“after” pos=“PREP”>after </w><w c5=“AT0“

hw=“a” pos=“ART”>a </w>

<w c5=“NN1” hw=“child” pos=“SUBST”>child</w><c

c5=“PUN”>.</c></s>

</u>

Example 38.1

Two one-sentence utterances from the BNC World edition, file

D8Y.xml.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1980022/c035100_9780262366076.pdf by guest on 04 January 2022

Managing Synchronic Corpus Data with the British National Corpus (BNC)	 455

nested into the ten verb lemmas, we might need 40,490

file accesses, which would be considerably slower.

As we are writing the script to gather this output,

we should make sure that the output we are generating

is more comprehensive than what table 38.1 suggests.

For instance, the following pieces of information are

“cheap” to obtain as we are doing the concordancing

but could be useful or even vital either for data process-

ing (e.g., sampling, sorting, filtering) or for the statistical

analysis later. Thus, in addition to collecting the mere

concordance data, there are some other kinds of infor-

mation that are routinely useful to collect:

•	 Every concordance line should have a separate case

number so that each case (i.e., row in the spreadsheet)

can be uniquely identified by that number.

•	 It is often useful to include information about the cir-

cumstances of production of a data point: this could

include register information, but it should minimally

include the mode, in other words, whether the file

contains spoken or written data, which we can extract

either from the teiHeader in the first line of each BNC

file or from the file’s text type tag in the second line.

•	 We should not just retain the exact verb form found

(as in the Match column in table 38.1) but also the

verb lemma in a separate column (so that all forms of

irregular verbs, such as be in a study of subject com-

plementation, can be sorted together).

•	 It is nearly always useful or even necessary to save not

only the file name in which a match was found, but

also the line/sentence number. Many linguistic phe-

nomena are subject to priming effects. That means the

processes of planning to produce a construction are

affected by whether that construction was processed

before and how long ago that happened. Retaining the

line/sentence numbers shown in figure 38.1 allows us

to control for priming effects by computing the distance

between two uses of a construction (see Gries 2018 and

references discussed therein). (Along the same lines,

it can be useful, in the case of spoken/conversational

data, to include the speaker from the utterance tag in

yet another column, which we will skip here.)

•	 Finally, it can be useful to immediately clear the out-

put of parts of the annotation that are not going to be

required anymore or that would make reading (during

the subsequent manual annotation process) harder. In

this case, we might delete part-of-speech tags, sentence

processing and statistical analysis, which means we want

to end up with a file in the so-called case-by-variable, or

long, format, which has the following characteristics:

•	 Every measurement of the dependent variable,

every data point, to be studied—here, the construc-

tional choice—gets its own row (in a spreadsheet-like

representation).

•	 Every variable or every feature with regard to which

each measurement/data point is annotated gets its

own column (see Gries 2021: section 1.4 for more dis-

cussion of this format).

Given this secondary goal—getting as close as possi-

ble to the case-by-variable format—we will proceed with

the regular expression option. This is because the output

of the XPath queries in R offered by, say, the XML pack-

age do not return two output lines for two instances of

the same verb (say, give) in the same sentence—at least

not straightforwardly. For example, if there was a corpus

sentence such as “Picard showed Data a phaser and then

Data showed it to Riker,” then the case-by-variable for-

mat requires that each use of showed is in its own row,

as shown here in table 38.1, which is not what the XML

package would immediately provide.

Without delving into actual R coding too much (again,

see Gries 2016), the regular expression route means we

could essentially proceed with two loops: one (outer) loop

that loads every corpus file (using the right file encod-

ing, which typically is UTF-8) so that its sentences can be

searched for the verb lemmas in question, and an inner

loop that retrieves every instance of each of the ten verb

lemmas from the sentences with, here, the whole sentence

as the context; note that often gathering more context can

be essential, for example, to annotate discourse-functional/

information-structural variables such as givenness/accessi-

bility. Note the arrangement of the loops: because the loop

that loads the files from the hard drive is the outer one,

our script requires 4,049 hard drive accesses—if we had

made the loop that loads the files the inner one, the one

Table 38.1
The case-by-variable format for two matches in one sentence

Preceding Match Subsequent

Picard showed Data a phaser and then
Data showed it to Riker

Picard showed Data a
phaser and then Data

showed it to Riker

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1980022/c035100_9780262366076.pdf by guest on 04 January 2022

456	 Gries

might seem like “it’s good enough for now,” but it often

happens that slight changes or additions need to be

made as the scope of a study changes, among other rea-

sons, and then having an elegant script is nearly always

a good return on the investment (of the time that went

into improving and streamlining the code).

As for the latter, running a script that does all of this

on the BNC using R’s default of just using a single thread

of the computer’s processor might take twenty minutes

or more (depending on the user’s hardware, obviously),

but the script that I used for all of this used ten threads

on a laptop with a 6-core Intel i5 processor and hyper-

threading (using the R packages foreach and doParallel)

and finished all the data retrieval and preparation dis-

cussed in this chapter within less than three minutes, a

speed that even only a few years ago would have been

nearly impossible to attain.

Section 3 deals with preparing and performing the

annotation processes after the first concordance has been

generated and saved.

3  Annotation

The next steps involve (i) preparing to weed out false posi-

tives and (ii) adding annotation with regard to the variables

that might affect the dative alternation to the true positives.

This part of the process is often done by research assistants,

so it is useful to be maximally consistent and minimize

the risk of errors in data entry, among other things, but,

in all honesty, I have applied the same kind of precautions

even in cases where I knew I was going to annotate the data

myself. In a manner of speaking, I was protecting myself

against my own errors, laziness, and such.

With regard to (i), in my experience it is most useful

to prepare for the annotation by adding (still in the R

script) an additional column to the data that is to the

right of the column with the match that is called, say,

Construction. That column can contain a placeholder

for now, but it will contain the labels ditrans, prepdat,

other for the constructions instantiated by the verb uses.

Plus, it needs to be able to also contain some other

code(s) to be able to, for instance, indicate that the row

has been looked at but needs further attention (e.g., to

disambiguate).

Also, I always recommend adding a column called

Problem, whose only purpose is to (i) be empty if there is

no problem whatsoever in any other column of the same

row/case, but to (ii) contain the letter of the column that

number tags (because we have the sentence number in

a separate column anyway), and so on, but for some

applications it might be useful to retain some tags such

as overlap markers, unclear word tags (which might

also indicate disfluencies), and others.

The final product is then ideally saved into a raw text

file (a tab-delimited .csv file ideally still with UTF-8 encod-

ing) that has column headers for all columns (which are

separated by tab stops), and that has been cleaned up

as well (e.g., no excess spaces anywhere); also, during

any such steps, great care needs to be exercised to not

compromise the identity and structure of the data. For

instance, R, and also spreadsheet software, may need to

be told explicitly how to handle single and double quotes,

number/pound signs, and so on, which may occur in a

corpus file, but must not disrupt R’s/the spreadsheet soft-

ware’s parsing of the files column structure; this was also

the reason why the columns in the output should be tab-

delimited because tabs, unlike commas, are not part of

the regular corpus file content and, thus, are no threat to

recognizing the structure of the file (see ?read.table and

?write.table in R and check the settings of the Text Import

Assistant in spreadsheet software).

Two related brief comments on preparing this output

file: First, it is useful to do as much as of this as possible

with code in an R script rather than manually or semi-

manually (e.g., using database lookup functions) in a

spreadsheet. This is because the output usually needs to

be fine-tuned over multiple attempts and so it will save

time and prevent errors if R does nearly everything with

a script rather than when a human has to intervene over

and over again manually with the point-and-click inter-

face of a spreadsheet software.

Second, and more generally, it is always tempting

to quickly hack together a script that somehow accom-

plishes the task, but I would encourage you to spend a bit

time on thinking and planning this properly. One par-

ticularly relevant aspect is that it is often worth the extra

five to ten minutes to think about whether (i) the code

you’re writing scales up to bigger research projects—if

not, it is often worth the extra effort to change the code to

make it run more efficiently, and (ii), relatedly, the code

can be parallelized, that is, it can use the multiple cores

or threads that contemporary computer processors now

routinely offer.

As for the former, hacking together some code that

just about works, but maybe inelegantly so (elegance not

referring to aesthetics, but computational efficiency),

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1980022/c035100_9780262366076.pdf by guest on 04 January 2022

Managing Synchronic Corpus Data with the British National Corpus (BNC)	 457

at all concordance lines from that file. Obviously, there

are many straightforward ways in which such sampling

might be implemented, so I will just mention two of

them that provide an additional perspective on this part

of the process. The first alternative could involve tabulat-

ing all files (in 4,049 rows) with all verb lemmas (in ten

columns) to see which verb lemma is attested how often

in each file. Then we could decide to only consider files

for sampling that contain say, at least eight of the ten

lemmas at least, say, twice. Of those files, we could begin

with the file with the smallest number of verb lemma

tokens and add all concordance lines from files—recall,

the sampling unit are files, not lines—with successively

more verb lemma tokens until we reach a desired num-

ber of concordance lines. The reason for this seemingly

convoluted scheme is that (i) it would make sure that

the files sampled contain a “decent variety” of relevant

verb lemmas and that (ii) we sample a “decent” number

of files (which makes sure that no one huge file and its

idiosyncrasies could affect our analysis too much).

The second alternative could begin as we did for the

first—identifying files with a decent number of matches

to begin with—and then randomly sample complete

files from those; in such a case, it is absolutely essen-

tial to set a random-number seed before any sampling is

done (in R: set​.seed) so that the sampling is random, but

also replicable.

Finally, it is often helpful to sort the complete output

in a useful way. This could be sorting by, for instance:

•	 Whether a file/concordance line is “in the sample” to

be studied or not (so that all to-be-annotated items in

the sample are together).

•	 The file name (so that all lines from the same file are

together).

•	 The sentence number (so that all lines from the same

file are in order of occurrence in the file).

•	 The length of the preceding context (so that multiple

hits in the same sentence are sorted in order of occur-

rence in the line).

Ideally, everything so far in this process would be per-

formed with a single fully automated script that, when

run on the same data, would give you the same output

and would require as little human intervention as possi-

ble (in the interest of speed and replicability). This would

entail, for instance, that file locations (of the input and

output files are hard-coded into the script). Also, the

code/script should be extremely heavily commented,

does contain something problematic requiring further

attention to disambiguate or that might lead to the case

being discarded. For instance, if a match for one of the

verb forms was found but something in the subsequent

context column K makes you think that maybe this

case should not be included, then the Problem column

would contain the letter “K” to indicate that, because of

column K, this line merits a second look. A lot of stu-

dents, but also more senior practitioners, do something

like this by changing the font color or the background

of the problematic cell, but these are things that can-

not easily be sorted by or find/filter in a spreadsheet that

has, say two hundred thousand rows, but a code in a sep-

arate column is something that can be found/filtered/

sorted by. Thus and more generally, if information needs

to be added to the data, add it into a column, not with

formatting, because only if information made it into a

cell of a column can all the data processing power of R/

spreadsheet software be applied to it efficiently.

Next, we need to select a sample of concordance lines

to read to determine whether they actually instantiate

one of the two constructions of the dative alternation.

The biggest mistake to avoid here is to draw a random

sample of, say five thousand concordance lines out of

all concordance lines. While this practice is still wide-

spread, it is a really bad idea for two reasons: First, many

phenomena are susceptible to priming effects, which

means that to analyze an example of a ditransitive in

file EFS.xml, it is most likely necessary to see what con-

struction was used last before that and how similar that

use was to the current one. But if we sample randomly

from all concordance lines, the current line will be sepa-

rated from all others in the same file, which makes such

annotation much harder than necessary. Second, many

corpus studies of this type these days are analyzed with

mixed-effects models or similar kinds of tools, one sell-

ing point of which is that they can control for speaker-,

file-, or lexically specific variability in the data. However,

if the one ditransitive in file EFS.xml that I am looking at

right now is the only one that made it into my random

sample (although there are actually many ditransitives

and prepositional datives in there, which were just not

sampled), then I am not giving my later statistical analy-

sis the chance to determine whether there is something

special to this speaker or file.

Thus, what we should do here is make the file the

subsetting/sampling unit: choose files (pseudoran-

domly) to be part of our subset/sample and then look

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1980022/c035100_9780262366076.pdf by guest on 04 January 2022

458	 Gries

appendix for what we are aiming for). Crucially, I recom-

mend using the Data: Validity functionality, which allows

a user to limit the number of options that can be entered

into a cell. Consider figure 38.1, which shows the first of

three tabs of the menu option Data: Validity in LibreOf-

fice Calc. In the Criteria tab, we can list the elements that

the user is allowed to enter into the cells of column J,

which are then shown in a drop-down selection list for

entering with a mouse click; in the Input Help tab, we

can enter a title and a help text that is shown when a user

clicks on a cell to enter something; and in the Error Alert

tab, we can enter what should happen and what feedback

should come up when the user tries to enter something

they are not supposed to enter.

This feature makes it much easier to avoid data entry

errors because, for instance, we can define a list of admis-

sible entries (as shown here), we can only permit num-

bers or dates, and such, and the pop-up help constantly

reminds an annotator of all the possible options that are

at their disposal—just make sure there also are options for

the annotator to indicate they have a problem and can-

not annotate a certain data point decisively yet.

Once all annotation of the relevant variables is com-

plete, we turn to the last data management stage, the

final steps before a subsequent statistical analysis.

which is useful if ever you want to share the script with

others and which is necessary to remind your future self

what you did and why a year ago (when you submitted

the paper to that special issue). A useful check as well

as documentation of all your activities during this stage,

but also during the later statistical analysis, would be to

generate two things: (i) a variety of output files (interim

results for fast debugging as well as final results) in useful

file formats (such as .rds for everything to be used only

within R and tab-delimited .csv for everything that might

be loaded into other software), and (ii) an HTML report

or an R Markdown document that contains all your code,

all your commentary, and all the results that would have

been in the console/on the screen in a single shareable

HTML file, which ensures proper error checking (because

otherwise the report won’t compile in the first place) and

transparency (to others and your future self).

Then, and only then, do we stop using R for a moment

and we can begin to actually annotate (i) whether concor-

dance lines are the right construction(s) and (ii) what their

characteristics are that might have affected the speaker’s

choice. For this part of the process, I recommend using a

spreadsheet software such as LibreOffice Calc (which has

characteristics such as full-fledged regular expressions and

better filtering functionality that, to my mind, make it

more useful than competing spreadsheet software; see the

Figure 38.1
The use of the Data: Validity

function to guide and constrain

data entry.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1980022/c035100_9780262366076.pdf by guest on 04 January 2022

Managing Synchronic Corpus Data with the British National Corpus (BNC)	 459

incremented instead; obviously, these kinds of things

need to be addressed prior to any analysis. Figure 38.2

shows how the Data: Autofilter functionality can be used

to check, here, that the Lemma column contains only

the lemmas it is supposed to contain.

Similarly, if data entry was not restricted with the

Data: Validity tool, annotators often unintentionally

add spaces to labels—for example, using the labels “ani-

mate” and “animate·”—which will create problems for

the later statistical analysis. Microsoft Excel does not even

flag this in its filtering function, but in LibreOffice Calc,

this would be obvious from the kind of filtering display

shown in figure 38.2. Therefore, we want to check for all

sorts of other problems including plain typos (“animat”),

other implausible values (decimal values in a column that

should only contain integers such as length of an NP in

words or characters), and many similar problems.

As for the latter kind of sanity check (in R), I recom-

mend loading the .csv file into a data frame in R and

explore it, minimally, with the summary function (to

get first frequency tables of all categorical variables and

numerical summaries of all numeric variables: if you

intended to restrict your speakers to younger people and

the median age value in the summary output is forty-

eight, then you might want to look at your code and

your (interim) output files again.

4  Preparation and documentation

Once the relevant data points—the uses of the two

constructions—have been identified and annotated for

the factors targeted in the study (e.g., length, animacy,

definiteness) there are several final things that need to

be done to make sure the data are in good shape for sub-

sequent (statistical) analysis.

The first of these is performing a general sanity check

of the data as a whole but specifically the annotation

that was entered. This can be done in two ways: in the

spreadsheet software (or any more specialized annota-

tion software) with which the annotation was performed

and within the software used for statistical analysis (these

days, typically, R). As for the former, I recommend using

the spreadsheet’s filtering function to determine whether

a column contains only sensible entries, for example,

only the animacy levels you intended to code or only

reasonable ages of speakers. This is more important than

you might think: I recently met with a student whose

spreadsheet (with more than twenty thousand rows)

contained a column named Age of Speaker (supposedly

measured in years), which upon inspection was found

to contain a variety of values exceeding 170. This arose

from an unintentional use of dragging down a cell with

a numeric value that was not repeated as intended, but

Figure 38.2
The use of Data: Autofilter to

check data entry.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1980022/c035100_9780262366076.pdf by guest on 04 January 2022

460	 Gries

practitioners presenting me with files called somescript.r,

newscript.r, betterversion.r, and ten different output files

whose names make no sense even to the users themselves

anymore once even only a moderate amount of time

has passed (see https://xkcd​.com​/1459​/). My recommen-

dations for a corpus study of the type I’ve discussed, with

the BNC or any other corpus, are the following:

•	 Create a new folder for each project.

•	 Name nearly all files in the folder so they are numbered

in order of creation and indicate what they produce.

•	 Name all files having to do with the paper or slides

you produce from the data 01a_paper.odt, for exam-

ple, with major successive revisions being called 01b_

paper.odt, 01c_paper.odt, and so on. This makes sure

they are shown at the top of the folder.

•	 Number all files involved in the analysis as follows:

The script that generates the first concordance from

the corpus is called 02a_concordance.r, which might

generate an output file called 02b_concordance​.csv​.

That file is then also saved as an .ods file 02b_concor-

dance.ods, which is used for annotating the data and

which, when the annotation is complete, is saved as

03_annotated.ods and, for R, as a tab-delimited ver-

sion called 03_annotated​.csv, and so forth.

•	 Note that the R script that reads this file and contains

the statistical analysis of 03_annotated​.csv is called

04a_eval.r and might produce output files 04b_. . . . ​

csv via 04e_. . . . ​rds to 04h_. . . . ​png and so on.

•	 Create the first file in the folder and name it 00_over-

view.txt. This file contains your notes that state for

every file in the folder (i) its name, (ii) what it does

(and what its input files are), and (iii) its output file.

As obsessive as this may seem, corpus studies of large

corpora often lead to huge amounts of results, not to

mention the possibility that multiple slightly different

attempts to come to grips with the data may have been

made, which quickly can lead to an explosion of files. (I

have seen many times, during office hours, the inability

of a student to even locate “the current analysis.”) In the

interest of proper data management and, hopefully, the

increase in precision, transparency, and replicability of

our corpus studies, these kinds of scenarios—see http://

phdcomics​.com​/comics​/archive​.php​?comicid=1323—

need to be avoided. If you follow the guidelines in this

chapter, they will be; of course, you can also use git or

similar tools.

Finally, and this is beginning to move away from the

core processing of corpus data per se and toward initial sta-

tistical processing, there are a few exploratory steps that

have implications on the data structure you’re working

with. For instance, it is straightforward, but very useful,

in R to quickly check for each column of your data how

many unique types it contains and what their frequency

distribution is and looks like when visualized in a statisti-

cal plot. This kind of information is useful because it often

offers suggestions with regard to (i) which column (espe-

cially of categorical variables) might contain more unique

values than it should, (ii) which column (especially of

categorical variables) might contain more super-rare val-

ues than is useful for a subsequent statistical analysis, and

(iii) which column (especially of numerical variables) has

distributional characteristics that are problematic for what-

ever subsequent analysis was planned and thus needs to be

transformed. If such exploration leads to new columns—

because levels of a categorical variable are conflated or

because numerical variables are log-transformed—it is usu-

ally a good idea to leave the old columns in the data frame

in case you unexpectedly need to go back and use the origi-

nal values again. However, if you have been doing what

I’ve recommended—diligently documenting all steps in a

code file and creating many interim results files—revisiting

an earlier variable state should be unproblematic anyway.

Note that sometimes you might even have to combine

multiple columns into one to disambiguate information

for the later analysis: Imagine a case where speaker IDs are

simply numbers from 1 to n in each corpus file. This would

mean that concordance line one thousand might be from

a speaker labeled as “1,” as might be concordance line two

thousand—but the two concordance lines might be from

different files! Thus, you would need to create a new col-

umn that conflates the file name and the speaker name

into one string so that the former becomes, say, “D8Y.

xml_1” and the latter becomes “EFS.xml_1.” The BNC

speaker codes include the file name, which avoids this

problem, but it is useful to be on guard for such or similar

situations; for instance, this careful separation of speaker

codes is also important for experimental data.

A final comment that is more general than the specific

scope of this chapter—data management with the BNC—

but still so important that I feel compelled to make this

point anyway: I strongly recommend the adoption of a

rigorous practice of naming files and documenting work-

flow across files. Too often, I see students as well as senior

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1980022/c035100_9780262366076.pdf by guest on 04 January 2022

https://xkcd.com/1459/
http://phdcomics.com/comics/archive.php?comicid=1323—need
http://phdcomics.com/comics/archive.php?comicid=1323—need
http://phdcomics.com/comics/archive.php?comicid=1323—need

A
p

p
en

d
ix

Fi
g

ur
e

38
.3

C
on

co
rd

an
ce

 d
is

p
la

y.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1980022/c035100_9780262366076.pdf by guest on 04 January 2022

462	 Gries

References

BNC Consortium. 2001. The British National Corpus, Version 2

(BNC World). Distributed by Oxford University Computing Ser-

vices on behalf of the BNC Consortium. http://www​.natcorp​

.ox​.ac​.uk​/​.

Bresnan, Joan, Anna Cueni, Tatiana Nikitina, and R. Harald

Baayen. 2007. Predicting the dative alternation. In Cognitive

Foundations of Interpretation, ed. Gerlof Bouma, Irene Kraemer,

and Joost Zwarts, 9–94. Amsterdam: Royal Netherlands Acad-

emy of Science.

Gries, Stefan Th. 2003. Towards a corpus-based identification

of prototypical instances of constructions. Annual Review of

Cognitive Linguistics 1 (1): 1–27.

Gries, Stefan Th. 2021. Statistics for Linguistics with R. 3rd rev.

and extended ed. Berlin: De Gruyter Mouton.

Gries, Stefan Th. 2016. Quantitative Corpus Linguistics with R.

2nd rev. and extended ed. London: Routledge, Taylor & Francis

Group.

Gries, Stefan Th. 2018. Syntactic alternation research: Taking

stock and some suggestions for the future. Belgian Journal of

Linguistics 31 (1): 8–29.

Gries, Stefan Th., and Anatol Stefanowitsch. 2004. Extending

collostructional analysis: A corpus-based perspective on “alter-

nations.” International Journal of Corpus Linguistics 9 (1): 97–129.

Lang, Duncan Temple, and the CRAN Team. 2019. XML: Tools

for Parsing and Generating XML within R and S-Plus. R package

version 3.98–1.20. https://CRAN​.R​-project​.org​/package=XML​.

McEnery, Tony, and Andrew Hardie. 2011. Corpus Linguistics:

Method, Theory and Practice. Cambridge: Cambridge University

Press.

Pope, Caty Worlock, ed. 2010. The bootcamp discourse and

beyond. Special issue, International Journal of Corpus Linguistics

15 (3).

R Core Team. 2019. R: A Language and Environment for Statistical

Computing. Vienna: R Foundation for Statistical Computing.

https://www​.R​-project​.org​/​.

Wickham, Hadley, James Hester, and Jeroen Ooms. 2018.

xml2: Parse XML. R package version 1.2.0. https://CRAN​.R​

-project​.org​/package=xml2​.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1980022/c035100_9780262366076.pdf by guest on 04 January 2022

http://www.natcorp.ox.ac.uk/
http://www.natcorp.ox.ac.uk/
https://CRAN.R-project.org/package=XML
https://www.R-project.org/
https://CRAN.R-project.org/package=xml2
https://CRAN.R-project.org/package=xml2

