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Statistics in corpus linguistics
Stefan Th. Gries

Abstract

The primary goal of this paper is to provide an overview of the use
of statistical methods in corpus linguistics in the hope that readers
will be able to, after having read this chapter, understand original
corpus-linguistic research studies and their methodological choices
and can begin to consider choices for their own applications; a
secondary goal is to augment the overview with some necessarily
subjective and critical discussion and suggestions for ways current
research practices might be improved. In Section 2, I discuss a range
of specifically corpus-linguistic statistics having to do with frequency,
dispersion, and association and I show at least briefly how these
notions can be measured/operationalized statistically and some of
the concerns and pitfalls users need to be aware of. In Section 3, I
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offer a brief survey of a variety of statistical methods ranging from
descriptive statistics, statistical modeling/machine learning, and
exploratory tools and briefly discuss a few studies that highlight
some of these methods’ strengths.

1. Introduction

Much corpus-linguistic work is ultimately based on a combination
of (i) 1+ several different corpus retrieval operations and (ii) 1+
statistical operations. The retrieval operations of (i) can be
distinguished in terms of how much context they involve: For
instance, if the goal is

a frequency list of a corpus (e.g., to know how frequent each
word is in the corpus), which requires retrieving all words from
a corpus but does not require contexts of those words — their
acontextual frequency alone is sufficient; this, as many things
below, is a bit of a simplification since it ignores, for example,
the often tricky problem of how to deal with multi-word units
such as because of: if one wanted to be able to count instances
of that expression as opposed to just counting instances of
because and of, some contextually sensitive parsing of the corpus
into words (a process called tokenization) would be required;

dispersion statistics for a corpus (e.g., to know how evenly
distributed a word is in the corpus), which requires retrieving all
words from a corpus as well as which corpus part/file they occur
in how often (and often the sizes of the corpus parts) — but the
words’ contexts within sentences or utterances are not required;

a collocation/collostructional study of co-occurring
elements (e.g., to know how much a word w ‘likes to co-occur
with’ another word or a construction), which requires retrieving
all instances of w from a corpus and the relevant other words/
constructions in, typically, a small context defined by a window
of words or a syntactically-defined slot;

a concordance (e.g., to know exactly how, say, a word w is
used), which requires retrieving all instances of w in their
complete context.
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Since each of these routes ultimately leads to frequencies — the
frequencies of a word in a corpus or its parts, the frequencies of
collocates around a word, the frequencies of any kinds of contextual
features around a word — corpus linguists more often than not have
to deal with statistical methods to address the questions they are
interested in. Such statistical methods can be heuristically considered
as coming in two different kinds: They might require

- specifically corpus-linguistic statistics: such as different
kinds of frequencies, dispersion statistics, and association
measures (to quantify the degree of attraction or repulsion of
an element to (i) either some other linguistic element in the
context (collocational/collostructional studies) or to (ii) one of
two or more corpora they are attested in (keyness studies
quantifying how characteristic a word is for a corpus);

- general statistical methods that can be applied to any kind
of data: ecological data, psychological data, ..., and corpus-
linguistic data.

This overview surveys and exemplifies both kinds of statistical
methods that are often found in corpus studies. Section 2 deals with
specifically corpus-linguistic statistics: frequencies, dispersion, and
association/keyness; it mentions some of the most important
considerations going into the choice and use of such measures and
exemplifies some of them in the R programming language and
environment (see https://cran.r-project.org); this is to give readers
an idea of how relatively simple it is to compute such measures
without having to depend on custom-made limiting software
applications. Section 3 then turns to general statistical methods and
discusses general descriptive statistics, the two main kinds of
statistical modeling techniques used in state-of-the-art studies, and
then some exploratory methods for situations in which no specific
hypotheses are tested; given the complexity of many of these methods,
in this section, I can only provide general characteristics of these
methods, but I will provide plenty of references for future reference.
Section 4 concludes.


https://cran.r-project.org);
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2. Corpus-linguistic statistical measures
2.1 Frequency
2.1.1 Overview

The most basic corpus-linguistic statistic is frequency of occurrence,
which usually comes in two kinds: Token frequencies state how
often a certain word, lemma, construction, morpheme, etc. type is
attested in a corpus. For instance, consider the following lines of
code in the R programming language (R Core Team, 2021) that
creates a small ‘schematic corpus’ (called words) consisting of five
parts p1 to p5, in which each letter represents a different word:

corpus.parts <- paste0("p", rep(1:5, c(9,10,10,10,11)))

words <-
C(Hbll,llall,llmll,Hnll,ll_ill,Hbll,Hell,llull,llpll,llbll,Hall,llsll,llall,Htll,llbll,llell,llwll,qul,llnll
,Hbll,"cll,Hall,llgll,Hall,Hbll,"ell,llsll,lltll,Hall,llbll,Hall,llgll,llhll,Hall,Hbll,Hell,llall,llall,
"t","b","a”,"h","a”,"a","b","e”,"a","x”,"a","t")

tapply(words, corpus.parts, noquote)

# 9pl

#[llbamnibeup

##

# $p2

# [llbasathewqgn
##

# 9p3

# [l]bcagabesta
##

# $pd

# [l]baghabeaat
#H

# 9pS

# [llbahaabeaxat

In this corpus, the token frequency of the word a is 15, which we
can quickly determine from either a full frequency table of the corpus

as created with table or from just counting the number of as in the
corpus directly:

table(words)

## words

# a b c e g h
# 1510 1 5 2 2
sum(words=="a")

## [1] 15
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The second important kind of frequency is type frequency,
which states how many different tokens (i.e. types) are attested in a
corpus or in a slot around a word / of a construction; the above toy
corpus has a word type frequency of 16:

Tength(unique(words))
## [1] 16

Both token and type frequencies can be reported as absolute
frequencies, which are the raw observed numbers as given above,
but often they are relativized/normalized to something like 100,000
or 1 million words; such relative frequencies permit comparisons
of token frequencies from differently large corpora. For example,
the word ¢ occurs once in the above corpus of 50 words, meaning
its frequency per million words (pmw) can be computed as follows:

observedtokenfrequency

1
— X 1000000 = — x 1000000 = 20000
corpussizeintokens 50

It is worth pointing out, however, that, while this kind of
frequency is often reported, it is not without risks: For many linguistic
elements under consideration, a normalization by the number of
words (i.e. putting the corpus size in words into the denominator
like we did here) is not obviously the right choice. For instance, if
the focus of a study is on ‘something morphemic’, relative frequencies
based on words will be less than ideal and putting something more
closely approximating the total token frequency of morphemes in
the corpus will fare better; same if the focus of the study is on
‘something syntactic/constructional’. Thus, the notion of ‘corpus
size’ is one that needs to be operationalized carefully.

A fairly recently suggested improvement to such frequencies is
the Zipf scale (van Heuven et al., 2014), another measure aiming
at making frequencies from different corpora more comparable.
This measure comes in two versions. The ‘basic’ one is simply
computed like this:

Zipfscale = 3 + logip0bs. freq.pmw

For the word c above, this would mean the Zipfscale-value would be
7.30103:
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3+10910(20000)
##1[1]7.30103

The ‘more advanced’ version of the Zipfscale also takes into

consideration a number of word types that were not actually

observed in a corpus but might have been. It is computed as follows:
obs.freq.+1

(corpussizemkens + corpussizetypes) = 1000000

Zipfscale = 3+ logqg

For the ‘word’ c above, this would mean the Zipfscale-value would
be 7.481486:

3+1og10(2/((50+16),/1000000))
## [1]7.481486

In addition to these frequencies of occurrence, we also find
frequencies of co-occurrence, which may also be expressed in
two ways. One might report an absolute frequency such as ‘in the
above toy corpus, the collocation a g occurs two times’:
Tength(intersect(

which(words=="a"),
which(words=="g")-1))
# 1] 2

Alternatively, one might report a relative frequency or conditional
probability: Since there are 15 occurrences of a and 2 occurrences
of g in the corpus, the collocation a g’s relative frequency (relative
to a) could be expressed as *>/ . = 0.1333333 while a g’s relative
frequency (relative to g) could be expressed as?/, = 1.

2.1.2 Applications/discussion

Frequencies of occurrence and/or co-occurrence are relevant in
different fields and for different reasons. In more applied settings,
frequencies inform pedagogical applications (e.g., which words/
patterns to teach (first/early)). In cognitive-linguistic and
psycholinguistic settings, the frequency of, say, a word has been
argued to be a useful proxy of its ‘commonness in a language/
dialect’ and of its degree of cognitive entrenchment, which in turn
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is correlated with ease and speed of access and comprehension as
measured by, for instance, reaction times in lexical decision/
recognition tasks. Correspondingly, psycholinguistic models
accommodate frequency effects in various ways, e.g., in strengths
of connections between nodes representing lexical items or
grammatical structures, in (higher) resting levels of activation, etc.
In many diachronic linguistics applications, frequencies are
important because, e.g., elements with a high token frequency resist
diachronic regularization patterns more than rarer elements and
expressions with high type frequencies in one or more of their slots
—1i.e., here we are including also co-occurrence frequency of, say, a
construction and something in one of the construction’s slots — are
more prone to grammaticalize and, thus, take on more general
meanings. In first language acquisition, high token frequency of
exposure is correlated with age and ease of acquisition and high
type frequencies in slots of constructions are correlated with
children’s ability to generalize and form linguistic categories. In
many different linguistic areas, high token frequencies are also
probabilistically correlated with, though not fully determinative of,
the status of an element as the prototype of its category, etc.!
However, in spite of all these well-documented correlations, two
crucial problems remain: First, correlation does not prove causation
and since frequency is not just correlated with response variables
such as reaction times etc. but also correlated with other predictors
of the same responses (e.g., rated familiarity, concreteness, age-of-
acquisition, word length, ...), it is a non-trivial task to determine
what role frequency really plays. Studies such as McDonald and

! As an aside: it would of course be possible to actually consider all such
frequencies of occurrence as frequency of co-occurrence because (i)
frequencies of occurrence of, for example, a word in a construction by
definition correspond to a co-occurrence frequency of that word and that
construction and (ii) while frequency counts are usually based on the formal
aspects of a linguistic sign (often words), each use of a word of course
(co)occurs with a certain (semantic, discoursal, ...) sense/function, butI
will not pursue this more ‘philosophical’ argument here.
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Shillcock (2001) or Baayen (2010) have demonstrated that frequency
as a repetition counter might in fact be much less causally related
with the above response variables and that other explanatory
variables/predictors are in fact more useful; this will probably be
one of the most important areas of research in the short-to medium-
term future.

Second, even though frequencies are probably the most widely-
used corpus statistic, they are often highly problematic, especially if
they are used to represent the ‘widespreadedness’ or ‘commonness’
of aword in a register or a corpus, which is in fact their most frequent
application. That is because any such frequency statistic is
essentially a mean without a dispersion statistic indicating how well
the frequency/mean represents the distribution it tries to represent
— for this, we need dispersion measures, which will be discussed
now.

2.2 Dispersion
2.2.1 Overview

To highlight the importance of dispersion, consider the following
question: How would you rank the following words in terms of
commonness in spoken data (as represented by the spoken part of
the British National Corpus (BNC)): council, nothing, try, whether? 1
am assuming everyone would consider council the outlier and think
that council is less common/widespread than the rest: One would
expect council to be less frequent, more clumpily distributed in a
corpus (especially one of spoken language), to be acquired later by
children and/or learners, and to be less polyfunctional than the
others, ... But, as we can see in Table 1, all four words have extremely
similar frequencies in the spoken component of the BNC:

Table 1: Frequencies of four words in the spoken part of the BNC

Word council nothing Try whether
Token frequency 4387 4159 4199 4490

However, this does not disprove any analyst’s likely intuition that
council would be less common - it might just as well suggest that
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frequency is a potentially problematic measure (especially if not
contextualized with a dispersion measure). Once we consider these
words’ dispersions by, for instance, determining the absolute number
of different files the words are attested in at least once — a crude
dispersion measure called range — an analyst’s likely intuition is in
fact confirmed:

Table 2: Ranges of four words in the spoken part of the BNC

Word council ~ nothing Try whether
Dispersion: range 292 652 664 671

Now a reader might of course claim that, for whatever (sampling)
reason, council is an exception — and maybe it is. However, one can
avoid having to resort to such a rhetorical slight of hand simply by
operationalizing ‘commonness’ better, namely with some measure
of dispersion, which here ‘gives the intuitively right answer’. Crucially,
this kind of situation is more common than one might think: In the
1m-words Brown corpus (consisting of 500 samples of written
American English), the words enormous and staining have the exact
same absolute frequency of occurrence (37), but the instances of
enormous are spread out over 36 different corpus parts whereas all
instances of staining are from only 1 of the 500 corpus parts — given
this distributional difference, claiming that both words are equally
common (because their frequency is the same) makes no sense at
all.

How can dispersion be measured? The most primitive measure
is the measure of range just discussed, which, however, is usually
expressed not as an absolute number of corpus parts but as the
percentage of the corpus parts that a word of interest is attested in
one or more times. In the case of the above toy corpus, we can
compute this measure quickly from a term-document matrix, a
table that has all word types in the rows, all corpus parts in the
columns, and the occurrences-per-file in the main cells:
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(tdm <- table(  # make tdm a table with

words, # the words in the rows

corpus.parts)) # the corpus parts in the columns
## corpus.parts
## words pl p2 p3 p4 p
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

X =EcCcturnoo S =E-SQOONT D
OO RrRPRO OO RrRPRPRPRPPRPOORPRPPONE
ORrRPORPRRPRPRPORPRFRPOOOOoOO PO
OO ORPRRPRrRPROOOOOORrRRFPEFPPNW
OO O RRP OO OO OO RrRPrRPrRPRrRrON D™
PO OROOOODOODOOO PO RrRrOoONUIUY

We just need to count for each word/row how many of the
frequencies per corpus part/column are greater than 0 and divide
that number by the number of corpus parts (5), and then we can
sort these percentages to see that, for instance, the range of the
word a is 1 (it occurs in every part) and the range of the word c is
0.2 (it occurs in only 1 of 5 parts):

sort(ranges <- apply( # apply to
tdm, # the term-document matrix,
1, # namely, each row
# an anonnymous function that checks how many frequencies are >0
\(af) sum(af>0)) / 5)
# ¢ 1m p g u w x g h n s t a b e
#0.20.20.20.20.20.20.20.20.40.40.40.40.81.01.01.0

The probably most widely-used measure of dispersion is Juilland’s
D, but recent comparative studies by Biber et al. (2016) and Burch
et al. (2017) have shown that Juilland’s D is actually somewhat
problematic, which is why I do not explain its computation here
(see Gries 2020 for the formula), and that Gries’s DP is superior at
least in their applications (it also outperforms Juilland’s D in Gries
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2010). With a term-document matrix like tdm, DP is extremely easy
to compute:

1.  one converts the frequencies with which a word occurs in
each corpus into row proportions (i.e. proportions of the
overall frequency of the word);

2. one converts the corpus part sizes into proportions (of
the overall corpus size);

3. one computes the pairwise differences of these
proportions, takes their absolute values, sums them up,
and divides by 2.

A potential 4th step could be to normalize DP to DP___ by dividing
DP by 1-the smallest corpus part size (to make sure the values exhaust
the interval of [0, 1]). Here, we do this for word a:

(step.1 <- tdm["a",]/sum(tdm["a",]))

# nl n2 p3 p4 ps
## 0.06660667 0.13333333 0.20000000 0.26666667 0.33333333
# meaning, 6.6667% of a is in the st corpus part

(step.2 <- colSums(tdm)/sum(tdm))

# opl p2 p3 pd pd

#0.18 0.20 0.20 0.20 0.22

# meaning, the first corpus part is 18% of the corpus
égP[ii auTéabs(step.1-step.2))/2) # computing DP from pairwise differences
(DP.norm <- DP/(1-min(step.2))) # normalizing it to [0, 1]

81702195122

Note that DP’s and DP___’s orientation is such that high values mean
clumpy/uneven distribution whereas low values mean even
distribution — if the opposite orientation is desired, one can just use
1-DP .. Here are the DP-values for the above 4 words from the

spoken part of the BNC, and again we see that council is much more
clumpily distributed than the other three words:

Table 3: DP-values of four words in the spoken part of the BNC
Word council nothing Try whether
DP 0.7178632  0.2802748  0.2802816  0.3155424
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Thus, given (i) how differently dispersed even words with the
same frequency can be, (ii) how there is mounting evidence that
words’ commonness might be better approximated by dispersion
than by frequency, and (iii) the relative ease with which dispersion
can now be computed, there is really no good excuse anymore not
to use it.

2.2.2 Applications/discussion

Given the above, it will not come as a surprise that I would basically
argue that dispersion is relevant in most cases in which researchers
have so far restricted themselves to frequency. This is for two main
reasons: First, frequency and dispersion simply answer different
questions and it seems to me that, while frequency is easy to compute
and seems straightforward to integrate into our explanations/
theories, for many applications the question that dispersion answers
is actually more pertinent. Frequency answers the question “how
often does x happen?” whereas dispersion answers the question “in
how many contexts/situations will you encounter x?”. This not only
establishes a clear connection to all sorts of recency effects in
language, memory, and processing (see e.g. Ambridge et al., 2006,
p.175), but we now have a growing body of evidence that shows
that dispersion’s predictive power is higher than that of frequency.
The above-mentioned studies of Baayen (2010) and Gries (2010)
showed that dispersion metrics have a higher degree of predictive
power than frequency when it comes to lexical decision times;
Adelman et al. (2006) offer similar results (but seem unaware that
what they are testing is dispersion); Ellis and colleagues have shown
that range has a significant predictive power when it comes to
construction uptake beyond raw frequency (Ellis & Simpson-Vlach,
2005; Ellis et al., 2007).

Second, frequencies of (co-)occurrence underlie pretty much all
corpus statistics, but since frequencies fail to reflect matters of
dispersion, using frequencies without accompanying dispersion
measures can lead to very misleading results. For instance, as early
as 2003, Stefanowitsch & Gries showed that an association measure
based only on corpus frequencies indicates that the verbs fold and
process are strongly attracted to the imperative construction in the
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British Component of the International Corpus of English (ICE-GB)
—however, a closer look revealed this to be a bit of an artifact because
these results are due to only a single file each in the whole corpus
(one book on Origami and one cookbook respectively). In other
words, any analysis based on frequency alone runs the risk of
reporting results that are completely skewed by one total outlier.

Bottom line, researcher should always inspect dispersion statistics
for any statistics computed from corpus frequencies: Not only might
those have a higher predictive power than anything based on
frequencies anyway, but this would also insure the researchers
against jumping to conclusions based on outliers. However, including
dispersion statistics can be done in two ways: (i) one can merge
one’s frequency-based statistic(s) with dispersion information into
a single (nicely sortable) vector of values or (ii) one can consider
both dimensions of information — frequency and dispersion — at the
same time yet separately. In the following excursus, I will argue
that the former is not uncommon, but ultimately misguided.

2.2.3 Excursus: frequency and dispersion

Sometimes, one finds applications where researchers are aware of
the relevance of dispersion information for a particular application
and compute it in addition to, for instance, observed frequencies.
In lexicography, for instance, dispersion is sometimes used to adjust
frequency information such that

if a word w is distributed very unevenly/clumpily in a
corpus (like staining in the Brown corpus), its frequency
gets adjusted downwards considerably (to avoid reporting
a perhaps fairly high observed frequency of a word that is
actually only attested in a very small part/section of the
corpus);

if a word w is distributed more evenly in a corpus (like
enormous in the Brown corpus), its frequency gets adjusted
downwards much less or not at all (because the even
spread of the word throughout the corpus lends more
credibility to the overall observed frequency).
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The adjustment of an adjusted frequency might simply consist
of multiplying the observed token frequency with a dispersion
measure whose orientation is such that low and high values reflect
clumpy and even distributions respectively (such as 1-DP ). For
the four words in the spoken part of the BNC discussed above that
means that the frequency of council would be adjusted downwards
quite a bit (because council is so clumpily distributed) whereas the
frequency of the other three words would be adjusted downwards
much less (because they are so much more evenly distributed). In
other words, researchers might compute the observed the frequencies
and the dispersions of words, but then compute the corresponding
adjusted frequencies and only report those. However, that conflation
of two dimensions (frequency and dispersion) for each word into
one dimension (an adjusted frequency) is not a good idea because
of the inevitable and massive information loss it incurs. Consider
these three words and their extremely similar adjusted frequencies
in the complete BNC: break (adj. freq.: 6419), books (adj. freq.:
6420), and minister (adj. freq.: 6415), or these two words in the
same corpus: fast (adj. freq.: 4317) and tax (adj. freq.: 4316). But
these very similar adjusted frequencies are from very different actual
frequencies and dispersion values, as shown in Table 4 and visually
represented in Figure 1 (where words are plotted at coordinates of
their frequency and dispersion and words connected by lines have
the same adjusted frequency):

Table 4: Adjusted & Observed Frequencies of 5 Words in the BNC
and Their Dispersions

Observed Adjusted
Word frequency Dispersion frequency
break 9128 0.703 6419
books 12872 0.499 6420
minister 23935 0.368 6415
fast 7349 0.587 4317

tax 16313 0.265 4316
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with completely different distributional characteristics seem virtually
identical; it’s hard to imagine an application where this massive
loss of information would be useful, which is why keeping frequency
and dispersion separate (as in the left three columns of Table 4 and
Figure 1) is by default a better way to go.

2.3  Association and keyness
2.3.1 Overview

Maybe the most central assumptions underlying much of corpus
linguistics is the distributional hypothesis, here in the form
provided by Harris (1970:785f.):

[i]lf we consider words or morphemes A and B to be more
different in meaning than A and C, then we will often find
that the distributions of A and B are more different than the
distributions of A and C. [...], difference of meaning correlates
with difference of distribution.

In other words, distributional similarity reflects functional
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similarity, where functional is broadly construed as encompassing
one or more of semantic, discourse-functional, information-
structural, and other kinds of similarity. That implies that words
that are semantically similar tend to occur in similar lexical and
grammatical contexts. For instance, the collocates (i.e. the words
you find ‘around’) of the noun cat will be more similar to the collocates
of the noun dog than to the collocates of the adjective ethereal. This
distributional hypothesis has been used particularly much in studies
of near synonymy of both lexical and syntactic constructions, i.e.
for sets of words or syntactic constructions with extremely similar
meanings/functions. While most native speakers of English might
not be able to explain to a learner of English what the precise
semantic differences are between brisk, fast, quick, rapid, speedy,
and swift or between deadly, fatal, lethal, mortal, they usually
experience no difficulties whatsoever deciding which to use in
natural conversation and they do so fairly consistently, and one
corpus-linguistic way of trying to tease apart such near synonyms
would involve looking at the words that co-occur with them within
a certain user-defined window (e.g. 4L-4R, meaning ‘from four
words to the left to four words on the right’) or within a certain
user-defined grammatical slot (e.g. the nouns that follow, and are
modified by, these adjectives). This logic extends to the co-occurrence
of words and constructions as well: In applications of
collostructional analysis, many constructions have been shown
to have strong preferences for certain (classes of) lexical items to
fill their slots; for example, the ditransitive construction [, ...
[NPrecipiem ...l [NPpatierlt ...]] has been associated with the meaning of
‘transfer’ (of the patient from an agent to the recipient) and the
verb slot of this construction is indeed highly associated with verbs
of transfer (in particular give, see Stefanowitsch & Gries, 2003; Gries
& Stefanowitsch, 2004).

How are such associations reported? The simplest way would be
frequencies again:

absolute co-occurrence frequencies: how often does one
find the collocation hermetically sealed in a corpus or how
often does one find regard in the as-predicative ([, V



94 MW Readings in Corpus Linguistics ...

[NPdirectobject o ] as [~XP ot ]])?

relative frequencies / conditional probabilities: how much
of the uses of hermetically (in percent) is followed by sealed
in a corpus or how much of the uses of the as-predicative
(in percent) contains the verb regard in its verb slot?

However, most of the time such associations are quantified using
dedicated association measures (AMs), most of which are based
on 2 x 2 tables such as Table 5, which cross-tabulates the frequencies
of the two elements in whose association one is interested in:

Table 5: A Schematic Co-Occurrence Table Underlying Nearly All
Widely-Used Association Measures

Element 2 Not element 2 Sum
Element 1 a b ath
Not element 1 c d ctd
Sum a+tc b+d N

In such a table,

the cell a would represent the absolute token frequency
of co-occurrence of elements 1 and 2;

the cell b would represent the absolute token frequency
of element 1 without element 2;

the cell c would represent the absolute token frequency of
element 2 without element 1;

the cell d would represent the absolute token frequency
of co-occurrence of not element with not element 2. Note
that as per the comment on what goes into the
denominator of relative frequencies in Section 2.1 above
(words, morphemes, syntactically-defined slots?),
determining the right unit for the cells d and, thus, N is
not always uncontroversial — what is, or how do we count,
‘not element 1’ and ‘not element 2’? The answer to this
question must be tailored to the nature of the question as
well as possible. Thus,
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for lexical co-occurrence/collocations, N is usually the
corpus size in word tokens;

for a collostructional study of an argument structure
construction, where such constructions usually involve a
lexical verb as their core element in one of their slots, N
has often been approximated with the token frequency of
lexical verbs.

This topic has been discussed especially in the context of
collostructional studies.? However, regardless of the nature of the
elements, uses of AMs nearly always follow a certain four-step

template:

1.

one retrieves (ideally) all instances of a first element of
interest, say a construction C;

for each type of the second element of interest (e.g., a
verb in a slot of C), one computes an AM that is (usually)
based on the relevant 2 X 2 tables of the above kind;

one sorts the second elements of interest according to that
AM;

one analyzes the top x elements of interest in terms of
their structural, semantic, or other functional
characteristics.

As an example of the kind of findings one might obtain for the
above speed adjectives, consider some of the most attracted noun
collocates after each speed adjective in the BNC (searched for without
tags and loosely grouped together by word family and semantics):

fast: bowler/bowlers/bowling, food, lane, track, car/cars,

reactor/reactors, breeder, pace, buck, ...;
quick: glance, look, succession, fix, throw-in, thinking, smile,
response, word, reference, ...;

2 SeeBybee (2010, p.98) for critical discussion of the d-cell in collostructional
studies and Gries (2012, p.487f.) for empirical results showing that Bybee
exaggerated the size of the problem, followed by Schmid and Kiichenhoff
(2013) and yet another rebuttal by Gries (2015).
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rapid: growth, expansion, rise, decline, succession,
development, change/changes, progress, deployment, rate;
swift: movement, glance, action, investment, tuttle, return,
kiss, recovery, rise, response.

While there is some overlap (and while this is only a small selection
of the most-attracted collocates), some semantic observations
emerge, e.g. the connection of fast with bowling and cars, the
connection of quick to mental/communication acts, the connection
of rapid to development in abstract domains, etc.

But how does one compute AMs that give rise to such findings?
With some simplification, two kinds of AMs can be computed for
such tables: bidirectional measures that quantify the mutual
attraction between the two elements in question or unidirectional
measures that quantify how much one element (1 or 2) attracts/
repels the other (2 or 1) but not vice versa.

2.3.2 The standard (still): bidirectional measures

For example, for a collocational study — e.g., what are the nouns
that follow the word fast? — this would involve creating for each
nominal collocate of fast (e.g., car) a version of the following table
(using made-up frequencies for exemplification only):

Table 6: A Concrete Co-Occurrence Table for “Fast Car”

car Not car Sum
fast 100 900 1000
Not fast 400 98600 99000
Sum 500 99500 100000

Such a table could be entered into R as follows:

(fast.car <- matrix(c(100, 400, 900, 98600), ncol=2, dimnames=1ist (
ADI=c("fast", "others"), NOUN=c("car", "others"))))

#H NOUN

# AD car others

# fast 100 900

# others 400 98600
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The most commonly-used measures one needs to know when
reading about collocational studies seem to be the following:

pointwise Mutual Information (MI), a value in the interval
[-”, +”] where positive numbers mean ‘mutual attraction’
and negative numbers mean ‘mutual repulsion’;

the loglikelihood ratio (G?), a value in the interval [0, +”]
whose size is correlated with the absolute value of MI and
indicates how much the distribution differs from chance
(and one would need to look at, say, the sign of the MI-
score to see whether the two words attract or repel each
other);

the odds ratio (OR), a value in the interval [0, +”] where,
if the OR is computed as below, values >1 mean the
elements in the first row and first column attract each
other and where values <1 mean the elements in the first
row and first column repel each other. Sometimes, this
value might be logged, in which case attraction/repulsion
of the elements in the first row and first column is
represented by positive/negative values respectively.

For out example of Table 6, these three measures could be
computed in R as follows:

# I for fast car

Tog2(100 / (1000¥500/100000))

# [1] 4.321928

# G2 for fast car

gIm(fast.car ~ c("car", "not car"), family=hinomial)$null.deviance
# [1] 438.1371

# OR for fast car

(100/900) / (400/98600)

## [1] 27.38889

All of these point to a strong mutual association between fast
and car: For example and using the odds ratio, if fast is there, then
the odds of car are 1 to 9 (100 vs. 900), but if fast is not there, the
odds of car are only 1 to 246.5 (400 vs. 98600), indicating how
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much less surprising the presence of car is when one has already
seen fast.

For a collostructional study — e.g., what are the verbs that like to
occur in the verb slot of the ditransitive construction? — this would
involve creating for each verb occurring in the construction (e.g.,
give) the following table:

Table 7: A Concrete Co-occurrence Table for [, give REC PAT]

Ditransitive Not ditransitive Sum
give 200 1400 1600
Not give 650 147750 148400
Sum 850 149150 150000

The same steps as before would yield the following results:

(give.ditr <- matrix(c(200, 650, 1400, 147750), ncol=2, dimnames=1ist(
VERB=c("give", "not give"), CONSTRUCTION=c("ditr", "not ditr"))))

# CONSTRUCTION

## VERB ditr not ditr

#  give 200 1400

# not give 650 147750

# MI for give in the ditransitive

T0g2(200 / (1600#850/150000))

# [1] 4.463284

# G2 for give in the ditransitive

gim(give.ditr ~ c("ditr","not ditr"), family=binomial)$null.deviance

# [1] 926.8206

# OR for give in the ditransitive

(200/1400) / (650/147750)

# [1] 32.47253

There is a large number of association measures that can be
used (see Pecina 2010) but the three above-mentioned ones probably
capture the majority of applications; two other common
bidirectional measures are (i) the t-score and (ii) the p-value of the
Fisher-Yates exact (FYE) test.
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2.3.3 Applications/discussion

As already indicated, AMs are often used to explore semantic and
other characteristics of elements on the basis of other elements they
are strongly associated with; examples include near synonymy (of
lexical items), many different kinds of syntactic alternations (which
involve, in a sense, near synonymy of grammatical constructions).
In psycholinguistic studies, associations between elements have been
useful as a measure of surprisal — how surprising is linguistic
material and what impact does that have on processing speeds?
Also, effects of priming have been shown to be correlated with verbs’
preferences to occur in certain constructions. In computational
linguistics, AMs are often an important step in vector-space
semantics because they are used to weigh the co-occurrence of items
whose distributional similarity is to be quantified. In research on
second language acquisition, studies have explored to what degree
learners’ knowledge of constructions involves knowledge of which
verbs native speakers like to use with which constructions. In other
applied linguistics contexts, AMs are also used in key words analyses,
which is a variant of collocational studies in which one does not
determine which words ‘like to occur’ with which other words but
in which one determines which words ‘like to occur’ in one corpus
as opposed to another one. For instance, words that are (most) key/
overrepresented in a corpus of engineering textbooks when
compared to a general reference corpus might be words that should
be taught (preferably) to engineering students (especially in foreign
language learning contexts).

2.3.4 Excursus: frequency and association

There are two important caveats to be mentioned. First and as
mentioned above, AMs are computed from frequencies of co-
occurrence, but do not take dispersion into consideration. Thus,
AMs can be extremely unreliable if the dispersion of the relevant
frequencies is not taken into consideration. In the above case, the
strong association of swift to the word tuttle is based on only '/,
files, in which that collocation is tagged as a proper name (of a
comet). Thus, any AM result is only as good as the frequencies that
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enter into it are ‘reliable’, to which proper (use of) tagging and
checks for underdispersion would contribute.

The second caveat is just as important: Some association
measures — those that are related to/derived from significance tests
such as G* p,., chi-squared, t, ... — react to high association between
elements (as they should) but also already just to high frequencies
of the elements involved. For example, in both the following two
tables start and higher.freq, word w has the same odds of 1 to 7 (50
vs. 350 and 100 vs. 700) to occur in construction c, but the G?-value
of the second table is more than 100% greater than that of the first
just because the frequency of word w in the second table is twice as
high as that of the first (400 in start and 800 in higher.freq):

(start <- matrix(c(50, 950, 350, 9998650), ncol=2, dimnames=Tist(
WORD=c("W", "Not w"), CONSTRUCTION=c("C", "Not c"))))

## CONSTRUCTION

## WORD C Notc

How 50 350

#  Not w 950 9998650

gIm(start ~ c("something","other"), family=bhinomial)$null.deviance # G2 of

start

# [1] 622.2269

(higher.freq <- matrix(c(100, 900, 700, 9998300), ncol=2, dimnames=1ist(
WORD=c("W", "Not w"), CONSTRUCTION=c("C", "Not c"))))

## CONSTRUCTION

## WORD C Notc

How 100 700

#  Not w 900 9998300

gIm(higher.freq ~ c("something","other"), family=binomial)$null.deviance # G2

of higher.freq

# [1] 1249.712

The OR-measure, on the other hand, returns a result that is more
in line with what one might expect from the two identical odds: the
OR-values are quite close to each other (differing by only about
5.5%):

(50/350) / (950/9998650) # OR of start

## [1] 1503.556

(100/700) / (900/9998300) # OR of higher.freq
## [1] 1587.032
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But see what happens if we have a table with the same frequency
of the word w as the first table (400) but a much higher association
between w and ¢ (an odds value of 1 vs. 3) such as the table
higher.assoc:

(higher.assoc <- matrix(c(100, 900, 300, 9998700), ncol=2, dimnames=1ist(
ADJ=c("word w", "Not w"), NOUN=c("construction c", "Not c"))))
## NOUN

## ADJ construction ¢ Not ¢
#  word w 100 300
#  Not w 900 9998700

Now, we can see that

the G?-value of higher.assoc is not that much higher than
that of higher.freq, meaning the G2-value does not seem
to notice the big association difference (because of the
lower frequency of w (400 vs. 800);

the OR-value of higher.assoc, however, is much higher than
that of higher.freq, meaning the OR-value notices the big
association difference very well:

gImChigher.assoc ~ c("something", "other"), family=binomial)$null.deviance
# G2 of higher.assoc

## [1] 1402.604

(100/300) / (900/9998700) # OR of higher.assoc

## [1] 3703.222

The same effect can also surface in really counterintuitive ways.
For instance, if one does a keywords analysis on the Clinton/Trump
Corpus to identify the words that are (strongly) characteristic of
Hillary Clinton’s campaign speeches compared to Donald Trump’s
campaign speeches, one will find the following frequency
distributions for the words hillaryclinton (as part of the phrase
hillaryclinton.com) and the word about:
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Table 8: A Concrete Frequency Table for Hillary Clinton in the
Clinton-Trump Corpus

Clinton corpus Trump corpus Sum
hillaryclinton 26 0 26
other words 117263 445730 562993
Sum 117289 445730 563019

Table 9: A Concrete Frequency Table for about in the Clinton-Trump
Corpus

Clinton corpus Trump corpus Sum
about 579 1386 1965
other words 116710 444344 561054
Sum 117289 445730 563019

Incredibly enough, these completely different distributions (26
vs. 0 and 579 vs. 1386), with their completely different odds ratios
(201.5 vs. 1.6!) return nearly exactly the same G2-values of around
81.66, proving even more that researchers should be extremely
cautious in interpreting such values given how G? conflates two
separate dimensions of information.

2.3.5 The desideratum: unidirectional measures

While the above mentioned measures account for probably 80-90%
of all studies, they come with an additional and potentially huge
disadvantage, namely that they do not distinguish how much fast
attracts/repels car from how much car attracts/repels fast. This is
more than just a technicality, which is easy to recognize by
comparing the following collocations, all of which have very high
G*-values (>189) in the spoken component of the BNC: according
to, instead of, ipso facto, upside down, at least, de facto, for instance,
in vitro, of course, bona fide, Sinn Fein.

A little deliberation shows that, although these are all highly
attracted collocations, these are actually three groups:

the first four are cases where word, attracts word, but
not vice versa: according is much more highly predictive
of to after it than vice versa;
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the next five are cases where word, attracts word, but
not vice versa: course is much more highly predictive of of
before it than vice versa;

the last two are cases where word, is very highly predictive
of word, and vice versa.

Thus, it is usually a good idea to see what a high bidirectional
AM reflects, a strong association in maybe just one direction or
truly mutual association? One way to compute this is a measure
called AR which is the difference between the relevant conditional
probabilities of occurrence. AP(give —ditransitive) is the conditional
probability of the ditransitive given give minus the conditional
probability of the ditransitive given the absence of give and is thus
computed as follows:

a c
AP, ramsitive = ——— —
give —ditransitive a+b c+d

With our current data in give.ditr, this means we compute it like
this in R:

give.ditr

## CONSTRUCTION
## VERB ditr not ditr
## give 200 1400

## not give 650 147750
(200/(200+1400)) - (650/(650+147750))
## [1] 0.1206199

On the other hand, A P(ditransitive—give) is the conditional probability
of give given the ditransitive minus the conditional probability of give
given the ditransitive and is thus computed as follows:
Ap a b
ditransitive — give — a—-}-c - m

In R:

give.ditr

## CONSTRUCTION
## VERB ditr not ditr

##  give 200 1400
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## not give 650 147750
(200/(200+650)) - (1400/(1400+147750))
## [1] 0.2259076

The results indicate that the ditransitive attracts give much more
than give attracts the ditransitive — depending on a study’s focus
and depending on the degree to which a study tries to establish
connections to, say, cognitive and/or psycholinguistic factors, these
kinds of differences can have theoretically important implications.

In the next section, we turn to general statistical methods in
corpus linguistics.

3. General statistical methods used in corpus
linguistics

3.1 Descriptive statistics

The simplest kind of statistical method involves descriptive statistics, i.e.

measures of central tendency, which summarize the
distribution of a numeric, ordinal, or categorical variable;
frequent examples include the mean (regular or trimmed),
the median, and the mode respectively;

measures of dispersion (now in the statistical sense),
which represent the diversity/range of a distribution of a
variable and, therefore, also represent how well a measure
of central tendency summarizes a variable; frequent
examples include the standard deviation, the interquartile
range or the median absolute deviation, and normalized
entropy respectively; in addition, it can often be useful to
indicate standard errors and or confidence intervals;

measures of correlation, which typically fall into the
interval [-1, 1] (or [0, 1]) and in the best of cases indicate
how much knowledge of one variable helps predict values
of another variable.

(See Gries 2021b: Section 3.1 for discussion of all these
measures.) While it is of course impossible to generalize across all
existing corpus-linguistic uses of descriptive statistics, it is probably still
useful to point out a few pitfalls that users of these statistics should avoid.
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First and as mentioned above, one should not provide measures of central
tendencies (or frequencies) without a measure of dispersion: a mean,
median, or mode need to be accompanied by a fitting measure of
dispersion. Second, corpus-linguistic data are often not normally
distributed and in all such cases using a median and a median absolute
deviation (rather than a mean and a standard deviation) is probably
more useful. That also means that other statistical measures that rely on
normality need to be used with extreme caution. Third, given the often
high degree of messiness and non-linearity in the data, the usual
correlation coefficients Pearson’s r, Spearman’s p, and Kendall’s rare
often insufficient and used even in contexts where they shouldn’t be.
Consider Figure 2, which shows the correlation of two variables that are
clearly strongly related: If one knows the x-axis value of any point, one
can predict the corresponding y-value (range) very well, but all three
standard correlations return values that do not reflect this fact well: r=-
0.4, p=-0.15, andz =-0.05. However, a more powerful approach to
correlations or even just a so-called PRE-measure — a proportional-
reduction-of-error measure between 0 and 1 that quantifies how much
better the variable on the y-axis can be predicted if one knows the variable
on the x-axis — does much better (PRE=0.815).
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Figure 2: A U-shaped correlation
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But such descriptive statistics, while important, are by now usually
just the beginning of a real analysis and the next section provides a
brief overview of the two most frequent kinds of modeling
applications in corpus linguistics.

3.2  Inferential statistics & predictive modeling
3.2.1 Regression modeling

The single most frequent kind of statistical application in corpus
linguistics is probably some form of binary logistic regression
modeling, i.e. a regression modeling approach that involves a binary
response variable (e.g., a phonological, lexical, or constructional
choice or the presence/absence of some element) that is predicted
on the basis of one or more linguistic and extralinguistic predictors
that are suspected to causally influence, or at least be correlated
with, speakers’ choices. The main advantages of such regression
models are that (i) several predictors can be evaluated at the same
time, which is more useful and realistic than one multiple single-
predictor analyses, and that (ii) interactions between predictors can
be included, which means one can determine whether some
predictors strengthen, weaken, or even annul the effects of others.

For instance, De Vaere et al. (to appear) study two alternating
ditransitive constructions (the indirect- and a prepositional-object
constructions) involving German geben (‘give’) in the DeReKo corpus.
1301 occurrences were annotated for 20 morphosyntactic, semantic,
and pragmatic factors and submitted to a logistic regression model
to see which factors ‘make speakers’ choose which construction.
Interestingly, their regression model involves a variety of more-
advanced-than-average methods to obtain good-quality results. For
instance, unlike many other studies, they allow for the effect of
their numeric predictors to be curved, which is useful because the
implicit assumption of straight-line effects is in fact often sub-
optimal because it is well-known that many cognitive/
psycholinguistic predictors such as learning, forgetting, priming,
etc. are curved. Also, they are careful to check their analysis for
potential problems such as overfitting (inferring too much from
the peculiarities of one particular data set) and collinearity (the
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highly tricky situation where multiple predictors are correlated with
each other). They obtain an excellent prediction accuracy (C=0.95)
and interpret their findings as providing evidence for the main
meaning of geben being not so much ‘literal transfer from one person
to another’ (as in give or hand) but a more general ‘transfer’ meaning
and highlight the descriptive fact that one of the constructions is
strongly associated with the passive voice.

Another example for regression modeling is Wulff & Gries (2019),
who use a multi-step procedure to study particle placement (e.g. He
picked up the book vs. He picked the book up) in learner corpus data.
In a first step, they fit a mixed-effects model to native speaker data
to identify factors that co-determine constructional choices in native
language. Then, they apply that model to the learner data to
determine what native speakers would have said in the situations
the learners were in and, ultimately, check to what degree the
learners’ performance was not nativelike and where. Their study is
noteworthy for (i) how their mixed-effects modeling can address at
least to some extent effects that are particular to individual particles
as well as speakers (in addition to an effect for L1 family) and for
(ii) its inclusion of phonological predictors (such as rhythmic and
segment alternation) in a study of a morphosyntactic constituent
order alternation. As an example of an interaction, they find that
the Chinese learners of English seem to pay less attention to the cue
of whether a directional PP follows the verb-particle construction
than the other learners, who seem to have understood better that
He picked the book up from the floor is more likely/acceptable than
He picked up the book from the floor.

Regression modeling will continue to play an important role in
corpus linguistics; for many applications, it is probably still the
default statistical choice, even if the distributional peculiarities of
corpus data — skew/imbalance, noise, Zipfian distribution leading
to low cell counts, etc. — often make them challenging to apply; see
Hilpert & Blasi (2020), Schéfer (2020), and Gries (2021a, 2021b:
Ch. 5-6) for recent overviews/introductions.
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3.2.2 Machine-learning/ predictive modeling

The probably second most widespread modeling method is the family
of tree-based approaches - trees and random forests, see Strobl et
al. (2009) — which have emerged as a powerful machine-learning
alternative to regression modeling. Trees are based on trying to
recursively bifurcating the data into two parts such that the response
variable is predicted as well as possible; random forests add two
layers of randomness to this process, which reduce the problems of
overfitting, collinearity, and overly powerful variables; see Levshina
(2020) and Gries (2021b, Ch. 7) for overviews.

An example of a tree-based application is Szmrecsanyi et al.,
(2016), who study three alternations (genitives, datives, and particle
placement) in four varieties of English (Great Britain, Canada, India,
and Singapore) to see whether these varieties share a core
probabilistic grammar and whether they are split between native
and non-native varieties. They use both trees and forests and find
that the factors co-determining the alternations indeed have the
same kinds of effects (thought different magnitudes) in these
varieties, but do not find a neat split between native and non-native
varieties.

Corpus linguistics is only slowly warming up to other kinds of
machine-learning methods or classifiers. While trees/forests have
become more widely used in just the last few years, other methods —
neural networks, support vector machines, gradient boosting, to
name but a few examples — are more widely used in computational
linguistics, but not yet in corpus linguistics, a development that is
likely in part due to the sometimes different goals of these two fields:
As I see it, corpus linguistics is often more concerned with explaining
phenomena (than with pure prediction) and might therefore be
more reluctant to adopt more black-boxy methods that excel at
prediction but are hard to interpret. However, it is likely that, over
time, corpus linguists will explore such methods as well; van der
Lee and can den Bosch (2017) is a recent example of a computational-
linguistic study that might make corpus linguists see the utility of
more diverse classifiers. In their study, they compare multiple
classifiers regarding how well they allow to predict the variety or
dialect of alanguage (Netherlandic vs. Flemish variants of Dutch in
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a corpus of more than 110,000 subtitle documents) based on text
statistics (e.g., average word length or ratio of long/short words),
syntactic features (part-of-speech tags), and lexical n-grams. They
then compare 5 machine-learning algorithms (including random
forests and support vector machines). They find that adaptive
boosting scores best (in terms of all criteria: precision/recall/F and
accuracy), but as far as I know, adaptive boosting is an algorithm
that has yet to find its way into corpus linguistic applications.

3.3 Exploratory methods

The final group of statistical methods to be discussed is that of
exploratory methods, i.e. methods that typically do not test one or
more hypotheses but that serve to identify structure (and maybe
generate hypotheses) in potentially large and multivariate data sets.
The probably most widely used method is that of hierarchical
cluster analysis (although other clustering methods exist and
are used, too). In hierarchical cluster analysis, the algorithm (i)
determines how similar each case in one’s data is to each other case
using a similarity method defined by the user and then (ii) groups
together cases into clusters (i.e. groups) that have a high degree of
within-cluster similarity and a low degree of between-cluster
similarity. An example using clustering on phonetic data is Moisl et
al. (2006), who check the Newcastle Electronic Corpus of Tyneside
English (63 interviews) for systematic variation of 156 phonetic
features and for whether these correlate with social factors. The
results show a clear geographical/dialectal north-south divide as
well as groupings reflecting speakers’ educational status.

An example of clustering on lexico-grammatical data is Gries
and Stefanowitsch (2010), who, in one of three case studies, cluster
the first verbs in the into-causative ([, V, [, ...] into [, V,ing]] as
in He tricked , himinto paying, ., a higher price) innearly 10,000
examples from newspaper data from The Guardian. They find a
coherent cluster structure that reflects the polysemy of this
construction and the verbs in it (with different clusters for verbs of
trickery, physical force, as well as positive and negative persuasion
verbs), a structure that might have been hypothesized, but would
not be discoverable without such exploratory methods. Thus, cluster
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analysis is a powerful tool but it can be tricky to implement because
of its open-ended exploratory nature and the impact that users’
methodological choices can have on the results; see Moisl (2015,
2021) for detailed overviews.

Other exploratory methods that are sometimes found are
principal components/factor analyses and correspondence analyses,
but these are less widespread at this point; Desagulier (2020) provides
a good overview of these methods. Finally, there is some growing
interest in methods such as network analysis: Ellis, Romer, &
O’Donnell (2016), who develop semantic networks for the verb-
argument constructions they study (e.g., the Vabout N construction,
the V across N construction, etc.), derive a variety of statistics from
those (e.g., betweenness and degree centrality, density, and others),
and, maybe most interestingly, apply a community-detection
algorithm to them to identify a variety of semantically-related
coherent groups of verbs in these constructions that shed light on
the polysemy of constructions and the prototypical members of
semantic groups of constructions. Another example of a network
study is Chen’s (to appear) structure of the network of Mandarin
Chinese space particles in the constructional schema zai + NP +
space particle in the 10m-words POS-tagged Sinica corpus.
Approximately 26K pairs of nouns and particles from these
constructions were analyzed with a network approach based on
three inputs: (i) collostruction strengths between nouns and
particles from a co-varying collexeme analysis, (ii) similarities
between the nouns from a word2vec model, and (iii) cosine
similarities between the particles. Chen shows that the network
exhibits a scale-free structure, meaning that only a few nodes are
frequently connected to other units and that most other nodes are
relatively unconnected — a striking emergence of the well-known
Zipfian distribution of words in constructional slots on the level of
a constructional network. Also, the network indicates that
experientially and interactionally more prominent particles exhibit
a higher degree of local clustering and, thus, more semantic
homogeneity.
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4. Concluding remarks

In sum, statistical methods are playing an increasingly vital role in
corpus linguistics. While not all corpus studies need very sophisticated
statistical methods, the increasingly specific hypotheses that are
being tested and the need to control noise in corpus data that
experimentalists could simply avoid with good and (pseudo-)random
experimental designs make it likely that the field will continue on
its current trajectory of using ever more advanced methods, which
is a good news-bad news kind of situation. The bad news is that this
development will continue to pose learnability challenges for all of
us — who can claim to stay on top of both corpus linguistics and
new statistical developments all the time?! But the good news is
that, to the extent that we can deal with the learnability challenge,
the resulting methodological/statistical diversity also foreshadows
exciting discoveries that methods from even just 10 years might not
have been able to produce.
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