Corpus linguistics and the cognitive/constructional endeavor
Stefan Th. Gries

Abstract
This chapter provides an overview of corpus-based advances in Construction Grammar. After a brief introduction on kinds of data in linguistics in general and the notion of corpora in particular, I discuss a variety of corpus-based studies categorized into (i) largely qualitative studies, (ii) studies based on frequencies and probabilities, (iii) studies focusing on association strengths, and (iv) statistical as well as machine-learning studies. In each section, representative studies covering a variety of languages and questions are covered with an eye to surveying methodological as well as theoretical advantages. I conclude with an assessment of the state of the art by comparing how recent developments fare relative to Dąbrowska’s discussion of Cognitive Linguistics’s seven deadly sins.

1. Data in linguistics and corpus data in CxG

Data in linguistics can be classified along at least three different dimensions (based on Gries 2013), each of which could, for simplicity’s sake, be heuristically divided into different points/ranges:

1. How natural does the speaker perceive his (experimental) setting?
 a. *most natural*, e.g., speakers who know each other talk to each other in unprompted authentic dialog;
 b. *intermediately natural*, e.g., a speaker describes pictures handed to him by an experimenter;
 c. *least natural*, e.g., speaker lies in an fMRI unit undergoing a brain activity scan while having to press one of three buttons in responses to digitally presented black-and-white pictorial stimuli.

2. What (linguistic) stimulus does/did the speaker act on?
 a. *most natural*, e.g., speakers are presented with natural utterances and turns in authentic dialog;
 b. *intermediately natural*, e.g., speakers are presented isolated words by an experimenter in an association task;
 c. *least natural*, e.g., speakers are presented with isolated vowel phones.

3. What (linguistic) units/responses does/did the subject produce?
 a. *most natural*, e.g., subjects produce natural and unconstrained responses to questions;
 b. *intermediately natural*, e.g., speakers respond with isolated words (e.g., to a definition);
 c. *least natural*, e.g., speakers respond with a phone out of context.

The present chapter is concerned with corpus-linguistic approaches in Construction Grammar (CxG), i.e. with approaches that tend towards the more/most natural part of each of these dimensions. The notion of a *corpus* can be considered a prototype category with the prototype being a collection of machine-readable files that contain text and/or transcribed speech that are
supposed to be representative of a certain language, dialect, variety, etc. and that were produced in a communicative setting. That means that at least the prototypical corpus scores most natural on each of the above three dimensions. Often, corpus files are stored in Unicode encodings (so that all sorts of different orthographies can be appropriately represented) and come with some form of markup (e.g. information about the source of the text) as well as annotation (e.g. linguistic information such as part-of-speech tagging, lemmatization, etc. added to the text, often in the form of XML annotation). However, there are many corpora that differ from the above prototype along one or more of the above dimensions and of course corpora also vary wildly in terms of their size, annotation, ease of access and processability etc. Accordingly, the prototypical corpus contains data that are a kind of good-news-bad-news situation: The ‘good news’ is that corpus data often have a very high degree of ecological validity precisely because the production data they contain are not tainted by any artificiality. But that is also the ‘bad news’: data that are “not tainted by any artificiality” is just another expression for ‘noisy and unbalanced’, which is one major reason why, as we will see below, the analysis of corpus data in CxG has become more and more heavily statistical – simply to deal with the multifactorial, noisy, and redundant mess that corpus data often are.

Corpus data did not play a big role in CxG historically. It’s probably fair to say that CxG is now a little more than 30 years old since the ‘founding’ publications are probably Lakoff (1987), Langacker (1987), Fillmore, Kay, & O’Connor (1988), to be followed by Goldberg (1991, 1995) and Kay & Fillmore (1999). But while much of this earliest work was mostly theoretical in nature and did not rely much on neither experimental nor on observational corpus data, today that situation has drastically changed. To use language from usage-/exemplar-/based linguistics: When I ‘grew up academically’ in the mid to late 1990s, learning about Cognitive Linguistics and CxG on the one hand and about corpus linguistics and Pattern Grammar (Hunston & Francis 2000) on the other, there were very few tokens of studies that, in some multidimensional exemplar space, would have scored highly both on the CxG and the corpus-linguistics dimensions – back in the 1990s I certainly did not form a productive category of ‘corpus-based CxG’. But then in the early aughts that all changed and CxG – in particular usage-based/cognitive CxG – has evolved at what seems like a breathtaking pace into a field of study in which we have moved

- from works with virtually no corpus data (or that used corpora as a mere repository from which to pick fitting examples) to studies with systematic data retrieval and annotation processes involving often thousands of data points;
- from works that presented isolated examples as evidence for what’s possible to studies with complex quantitative methods that show what’s likely and that involve, for instance, multifactorial or multivariate statistical analyses, ‘more traditional’ machine-learning or fancier deep-learning or construction-induction methods, or network analyses.

And much of that move really only happened within the last 15 or so years. In 2013 I published an overview article on “Data in Construction Grammar” (in Trousdale & Hoffmann’s Oxford Handbook of Construction Grammar), which had a mere 5-6 pages on corpus-based and/or computational (machine-learning) studies – this time around even just sampling papers from leading journals publishing studies relevant to this overview (e.g., Cognitive Linguistics, Constructions and Frames, and Corpus Linguistics and Linguistic Theory) had to be restricted to a small number of recent years so as to avoid drowning in an unmanageable number of interesting and methodologically extremely diverse studies. The purpose of this chapter is to give an overview
of the different applications of corpus-linguistic data and methods to linguistic phenomena from a CxG perspective. While the overview is unlikely to be truly representative of the field (along what dimensions anyway?), care was taken to represent studies that differ along a variety of essential parameters, including:

- the language(s) studied;
- the kind of language(s) studied: L1/native speaker data, L2/FL non-native speaker/learner data, indigenized-variety speaker data, …;
- the resolution: individual speakers vs. variation between individuals vs. (dialectal) speech communities, …;
- the temporal kind of study: synchronic vs. diachronic/longitudinal;
- the (ranges and kinds of) corpora used;
- the use to which corpora were put: a collection of examples vs. fine-grained (semi-)manual annotation vs. bottom-up/inductive processing vs. correlation with additional experimental results, …;
- the question the study is trying to answer and, related to that, the ‘scientific goal’ of the study: description vs. hypothesis-testing vs. exploration, …;
- the statistical methods used for the analysis of the corpus data: none/qualitative only vs. frequencies/probabilities vs. association measures vs. multifactorial (predictive) modeling vs. exploratory and/or machine-/deep-learning kind of methods, …

The overview will be structured according to the latter two criteria because (i) the two criteria are of course often very much related to each other and (ii) for many researchers it will be interesting to see which kinds of CxG questions corpus-linguistic data, their (typically) qualitative annotation, and their statistical analysis can help address. Also, it is particularly in the interplay of the last two criteria that corpus-based CxG has maybe most developed. Put differently, while the field is of course still concerned with definitional matters, questions of learnability, abstraction, and/or representation (both mental and formal), corpus-linguistic approaches have been and are now also targeting specific subsets of questions that in turn naturally come with specific degrees of quantitative methods. I will therefore proceed by discussing

- raw/normalized frequency-based approaches;
- studies involving associations and their strengths between different constructions and/or their parts;
- statistical modeling, machine-learning, and exploratory/inductive bottom approaches.

In each of these sections, I will try and highlight topical clusters, i.e. areas/questions that appear to be targeted particularly frequently; Section 4 will conclude.

2. Corpus-based applications in CxG

2.1 Largely qualitative corpus approaches

As mentioned above, the initial ‘uses’ of corpus or corpus-like data in CxG papers were largely only presentative in nature and served to make some theoretical point(s) by means of authentic examples, but often without the kind of systematic feature annotation that is characteristic of much
contemporary work. This pointing out a lack of multivariate annotation is not meant as a criticism, given the different goals of papers at the time, but what is maybe a bit more critical is that some such literature did often not clarify whether examples provided were made up or attested (and, if they were attested, what the source was). For example, Fillmore, Kay, & O'Connor (1988:519) discuss hundreds of example sentences but usually provide no information on them let alone what their source is. One time they state “we have come across incontrovertible cases of attested utterances of non-negative let alone sentences that seem perfectly natural and which there is no apparent justification to ignore as performance errors” and proceed to discuss their examples (71) and (72) by stipulating (admittedly likely) contexts in which they may have been uttered. Kay & Fillmore (1999) proceeds in a similar way: we don’t learn much about where examples are from etc., and the same is true of many other studies such as Smith (1994), Kemmer & Verhagen (1994), Dancygier & Sweetser 1997, Morgan (1997), Gutzmann & Henderson (2019), and many others, which were all introspection-based and, if they used the word data, typically used it referring to introspective judgments and/or example sentences.

Crucially, this is not just some complaint from a quantitative corpus linguist who wants corpus examples for the sake of corpus examples – the point is that what seem like clear-cut judgments from native speakers on made-up or even attested examples can look very different once one looks at (larger) quantities of data – as Sinclair (1991:100) said, “Language looks very different when you look at a lot of it at once”. For example, it is likely that traditional linguists would consider a sentence such as He [vp donated [rec her] [pat transplant money]] ungrammatical, since it is widely held that the verb donate cannot be used ditransitively (even if its meaning is so similar to the ditransitive’s prototypical verb give). However, Stefanowitsch (2006:69) shows that even the British National Corpus – a great but by today’s standards not particularly large corpus – already contains at least one example exactly like this (in a maybe atypical newspaper headline, however), and Stefanowitsch (2007:65) lists 10 examples of donate used ditransitively from a variety of internet pages from .uk domains, all of which “do not conform to what we might think of as the default DONATE frame”; instead, they appear to instantiate a frame that Stefanowitsch describes as follows:

A donor transfers some of his/her money to a recipient. The recipient is an official organization who uses the money to advance some public or charitable cause or to pay for its own expenses in doing so. The donor is an individual who gives the money because s/he believes in the cause, and without expecting to profit personally. There is no personal relationship between the donor and the recipient.

Thus, while linguistics in general and CxG in particular have benefitted a lot even from papers that did not feature corpus data or analyses, linguists clearly have no unbiased and axiomatically correct view of what is possible (i.e. what can or cannot be said, see Labov 1975) let alone what is likely. Thus, even theoretical works without any kind of quantification might have turned out a bit different if corpora or corpus-like data had been consulted systematically, and I think it’s fair to say that usage-based linguistics and CxG have evolved precisely in this direction. For instance, Hamunen (2017) is not the least bit quantitative but still not only bases its diachronic exploration of the Finnish Colorative Construction mostly on 1741 examples from three different corpora/corpus-like databases (viz. the Finnish Syntax archive, the Digital Morphology Archive, and the Digital Dictionary of Finnish Dialects), but also highlights all made-up examples as such. Beliën (2016) explicitly points out this methodological turn –
“the method is applied to corpus data, because they show what types of structures are actually produced by speakers, and in which contexts. Earlier studies, on the other hand, relied on isolated, constructed sentences, with diverging grammaticality (or acceptability) judgments as a result. The authentic data presented here were collected from the 38 million word corpus of the Institute for Dutch Lexicology […] and from the Internet.” (p. 13)

– before discussing the failure of traditional syntactic constituency tests regarding the analysis of Dutch particle constructions. However, it seems to me that most more recent and contemporary studies based on corpus data do involve at least some kind of quantification and I think that there are very few questions, if any, that cannot or should not be studied quantitatively as a matter of principle (but of course, there may be situations where, e.g., data sparsity may rule out the use of certain statistical methods); see Jenset & McGillivray (2017: Section 3.7), Gries (2019b:25-29) or Gries (2021:Section 1.2) for more on this question and we now turn to the simplest kind of quantification: frequencies of (co-)occurrence and (conditional) probabilities.

2.2 Frequencies of (co-)occurrence & conditional probabilities
In spite of the statistical simplicity of frequencies and probabilities, if they are applied in the right kind of research context, they can be instructive, as is evidenced by a variety of studies having to do with issues of frequency as a mechanisms driving, affecting, or at least being correlated with entrenchment, learning/acquisition, language change, and productivity. For instance, in the area of language acquisition/learning, by now classic studies such as Goldberg’s (1999) analysis of L1 acquisition data from CHILDES (to determine how highly frequent semantically light verbs facilitate the acquisition of semantically similar argument structure constructions) or Ellis & Ferreira-Junior’s (2009a, b) longitudinal study of L2 acquisition of verb-argument constructions in the European Science Foundation corpus were among the first to empirically highlight the importance of frequency of occurrence (of constructions) and frequency of co-occurrence (words in constructional slots) for language acquisition/learning or the ubiquity of Zipfian distributions of constructions or material within slots of constructions. Another hugely influential application of conditional probabilities – as cue validity – is Goldberg, Casenhiser, & Sethuraman (2004), who show that certain patterns (e.g., V-Obj-Loc) have very high cue validities for certain meanings (e.g., caused motion), which reinforces the notion of constructions as pairings of form and meaning reliable enough to facilitate acquisition based on recognizing association patterns and chunking.

Quantitatively similar applications can also be found in other areas. An example of how corpus frequencies can inform theoretical argumentation is Boas (2004), who challenges a Minimalist Program account of wanna contraction in English. He shows that less than 1% of the examples of wanna contraction in the Switchboard corpus are instances within WH-clauses, which is interesting because most analyses put a lot of emphasis on wanna contraction in WH-clauses even though wanna contraction is actually more frequent than want to in relative clauses. As Boas argues, if a theory of language claims not only to be descriptively but also explanatorily adequate, the question for Ausin’s [Minimalist Program] analysis is how it may account for these differences in distribution (p. 482).

Another study that is based on statistically very down-to-earth percentage data but uses them to make valuable theoretical contributions is Gaeta & Zeldes (2017). They use DeWaC, a 1.6b-words corpus of web-based German to study -er compounds (with agent noun heads) from a
Construction Morphology perspective. On the basis of type, token, and hapax counts, they explore with which frequencies different combinations and orders of compounds are attested and the direction in which prototypical instances are generalized and argue that Construction Morphology’s flexibility (in terms of permitting different derivational pathways of compounds) makes it an approach that supersedes purely syntactic or purely morphological approaches.

Quantitatively similar work – using type and token frequencies – is also found in Quochi (2016), a paper on a radial-category family of Italian light-verb constructions and their acquisition in L1 data from the CHILDES database. Approximately 2100 instances of fare (‘do’) + noun constructions from children and adults are investigated in terms of the nouns/noun categories they occur with and the type-token-ratios of verb-related nouns. Tracking new types over time she finds, among other things, that fare + nouns derived from verbs by suffixation appear to be rote-learned rather than instances of creative production. The general time course of acquisition Quochi observes is one where children first pick up on the most frequent uses, then develop a more abstract schema, which becomes generalized to intransitive actions, a development that is compatible with usage-based approaches to language acquisition of the kind outlined by Tomasello (2003), among others.

Let’s finally look at a couple of statistically simple yet interesting applications that also bridge the gap to studies that involve higher degrees of statistical complexity. One of these is Vázquez Rozas & Miglio’s (2016) study of which linguistic features are associated with Spanish and Italian speakers’ choices of experiencer-as-subject (ES) and experiencer-as-object (EO) constructions. They look at clauses with an experiencer and a stimulus, where some such clauses construe the experiencer as Subject and the stimulus as Object while others have experiencers coded as dative/accusative Objects and stimuli as Subjects. For Spanish, they rely on the ARTHUS corpus of American and Peninsular Spanish; for Italian, they combine several databases to approximate a similar (and similarly-sized) corpus (La Repubblica, C-ORAL, and the BAdIP database). Both corpora were searched for two-argument clauses with active-voice ‘feeling’ verbs (excluding ‘volition’ verbs). The main body of their paper reports a variety of frequency/percentage results for many different features of the clauses, including experience animacy, person, number, syntactic category as well as stimulus animacy and syntactic class, and register/genre. Specifically, they point out correlations between ES vs. EO choice and experiencer and stimulus characteristics. However, they go beyond these monofactorial explorations by also subjecting the data to a multifactorial analysis using a conditional inference tree, which is much more able to identify complex relations and interactions in the data, in particular to how discourse-related factors can interact with syntactic form and semantic structure of the clause. Their paper therefore bridges the gap from frequency/percentages-only studies to the kind of multifactorial work that seems to be the state of the art today and will be discussed more below.

Another interesting application is Chen (2017), a diachronic CxG study based on (i) contemporary Mandarin Chinese data from the Academia Sinica Balanced Corpus of Modern Chinese and (ii) diachronic data for Old Chinese, Middle Chinese, and Early Mandarin from the Academia Sinica Ancient Chinese Corpus. She tracks the frequency of senses and what they co-occur with to explore how diachronic realignment processes gave rise to a synchronic polysemy network of one-phrases in Mandarin involving counting/quantifying senses, but also senses in involving a negative-polarity sense and an attenuating positive polarity sense. As Chen concludes, “The associations [between one-phrases and already established constructions] have been shaped by the environments where the ‘one’-phrases frequently occur. The combination inherits syntactic, semantic, and pragmatic properties from the higher-level constructions, leading to new
constructs.” (p. 97), which makes for a perfect transition to one of the, if not the, most widely used statistical methods in corpus-based CxG, the measurement of association strength and its implications for acquisition/learning, use, and change and the topic of the next section.

2.3 Association strengths

Another frequent statistical method in corpus-based CxG involves a class of measures called association measures, i.e. measures that are ultimately based on frequencies but then quantify the degree to which (typically two) elements from any level of the constructicon like or dislike to co-occur with each other or, put differently, the degree to which the presence of one element makes the presence of another element more likely. This is a central issue for many questions from as seemingly minute as the preference of words to occur with particular inflectional morphemes via the preference of words to occur in syntactic/argument structure constructions to, most fundamentally, actually any association of form and meaning (e.g., as when children determine from co-occurrence patterns that certain verbs have certain meaning and like to occur in certain constructions). The maybe most widely-used statistical application in this context involves quantifying the degree of association between words and (slots of) constructions. The four papers of Stefanowitsch & Gries (2003, 2005) and Gries & Stefanowitsch (2004a, b) develop a family of methods referred to as collostructional analysis, a blend of collocation and construction:

- *collexeme analysis*: the quantification of how much words are attracted to, or repelled by, a syntactically defined slot in a construction (e.g., the verb slot in the ditransitive construction or the noun slot in the N-waiting-to-happen construction);
- (multiple) *distinctive collexeme analysis*: how much a word (dis)prefers to occur in a certain slot of two or more functionally similar constructions (e.g., the verb slot in the two constructions making up the dative alternation);
- two variants of *covarying collexeme analysis*: how much elements in two slots of one construction (dis)like to co-occur (e.g., the two verb slots in the into-causative, i.e. in V DO_NP into V-ing).

Most applications of either of these methods have been based on 2x2 co-occurrence tables such as Table 1, in which the elements’ and cell frequencies’ meanings depend on which analysis one conducts:

- for a collexeme analysis of the ditransitive,
 - element 1 might be one verb in the ditransitive (e.g., give) and element 2 would be the ditransitive construction;
 - \(a+b\) would be *give*’s frequency in the corpus, \(a+c\) would be the ditransitive’s frequency in the corpus, \(a\) would be the frequency of *give* in the ditransitive;
- for a distinctive collexeme analysis of the dative alternation,
 - element 1 might be one verb in the ditransitive or the prepositional dative (e.g., give), element 2 might be the ditransitive construction, and ‘not element 2’ would be the prepositional dative;
 - \(a+b\) would be *give*’s frequency in the corpus, \(a+c\) would be the ditransitive’s frequency in the corpus, \(b+d\) would be the frequency of the prepositional dative;
- for a covarying collexeme analysis of the into-causative,
 - element 1 might be one verb in the into-causative (e.g., trick) and element 2 would
then be a verb₂ in the into-causative (e.g., believe);

- \(a+b\) would be trick’s frequency in the verb₁ slot of the into-causative, \(a+c\) would be believe’s frequency in the verb₂ slot of the into-causative, and \(a\) would be the frequency of trick DOₙₚ into believing in the into-causative:

Table 1: A schematic co-occurrence table underlying nearly all association measures

<table>
<thead>
<tr>
<th>Element 1</th>
<th>Not element 2</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element 1</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Not element 1</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>Sum</td>
<td>(a+c)</td>
<td>(b+d)</td>
</tr>
</tbody>
</table>

Each of these applications follows a very similar four-step template, which is identical to the same decades-old approach in collocation studies in non-CxG corpus linguistics:

1. one retrieves (ideally) all instances of a construction of interest \(C\);
2. for the element(s) of interest (e.g., a verb in a slot of \(C\)) one computes (a) measure(s) of association that are (usually) based on the relevant 2x2 tables of the above kind;
3. one sorts the elements of interest according to that association measure;
4. one analyzes the top \(x\) elements of interest (often called collexemes) in terms of their structural, semantic, or other functional characteristics.

This family of methods was already relatively widespread 10 years ago, when it was already used in studies on near-synonymous constructions (alternations), where, for instance, the method was precise enough to discover the iconicity difference (Thompson & Koide 1987) between the ditransitive (small distances between recipient and patient) and the prepositional dative (larger distances between recipient and patient) and many other domains, e.g. in the study of priming effects (Gries 2005, Szmrecsanyi 2006), L1/L2 acquisition and learning of constructions (Gries & Wulff 2005, 2009, Wulff & Gries 2011, Ellis & Ferreira-Junior 2009a, b, and especially the extremely comprehensive Ellis, Römer, & O’Donnell 2016), constructional change over time (Hilpert 2006, 2008), etc. In addition, the approach has received some experimental support (Gries, Hampe, & Schönewald 2005, 2010) and has stimulated research that combined it with other methods. Backus & Mos (2011), for instance, explore the productivity and similarity of two Dutch potentiality constructions – a derivational morpheme (-baar) and a copula construction (SUBJ COPₙₚ te INF) – and combine association measures with acceptability judgments. They report the results of a distinctive collexeme analysis to determine which verbs prefer which of the two constructions in the Corpus of Spoken Dutch and follow this result up with a judgment experiment to probe more deeply into seemingly productive uses of the constructions. They found converging evidence such that acceptability is often correlated with corpus frequencies and lexical preferences (see the chapters in Schönewald 2011 for more examples of converging evidence and more on frequency vs. acceptability below).

But more recent applications have broadened the scope even more, have used suggested improvements, and/or even added/extended the method and, thereby, have added to the theory of CxG. For example, Hoffmann et al. (2019) extend collostructional analysis by exploring the elements in slots on a more schematic level and the correlations between what happens in a construction’s slots on that more abstract level. They study 1409 tokens of the comparative
correlative constructions (e.g. *the more, the merrier*) from the 2015 part of the Corpus of Contemporary American English (COCA) in terms of several of the construction’s characteristics: the grammatical/phrasal filler type (of either comparative), the lexical filler, and the presence/absence of different kinds of deletion. They first apply a covarying collexeme analysis using the unidirectional association measure ΔP (Ellis & Ferreira-Junior 2009b, Gries 2013b) rather than the usual bidirectional measures and they not only explore the words in the slots per se, but also to the more schematic characteristics. Among other things, they find that the only filler types significantly attracted to each other are pairs of the same filler type, indicating that one’s account of the construction should not attempt to treat the construction’s slots as independent, an observation that can only be made when corpus data meet statistical methods in the analysis. Another example of the use of the unidirectional ΔP approach to collostructions and a study not of the ‘usual suspect’ of verb-argument or argument structure constructions, but to the level of lexeme-morpheme associations is Rastelli’s (2020) analysis of lexical aspect in L2 Italian. Also, an at least generally similar analytical approach, which also explores co-occurrences at multiple levels of generality, is pursued in Abdulrahim (2019), who studies go-constructions with three types of verbs in Modern Standard Arabic and their association to a variety of lexico-syntactic features using a multidimensional extension of collostructions, so to speak, Hierarchical Configural Frequency Analysis (HCFA, Gries 2009, Stefanowitsch & Gries 2005), a method that tries to identify over- and under-represented cells in multidimensional frequency tables.

None of the above is to imply that collostructional analysis has not also been criticized, but much of the critique was either based on a variety of misunderstandings with regard to both the method’s goals and their implementation. For instance, with regard to the former, Bybee (2010: Chapter 5) criticized collostructional analysis for its lack of considering semantics (especially on the input side of the analysis) when in fact the whole point of collostructional methods is to be able to infer semantic (or other functional patterns) from its output. Similarly, Bybee criticized the collostructional approach for a lack of discriminability in her results, but did not actually perform a full-fledged analysis herself: Rather than using the method to all words in a certain construction and as described in four steps above, she restricted her input to extremely low-frequency items that collostructional methods were not developed for and then performs only step 2 of the above four. Schmid & Küchenhoff (2013) suffers from similar problems. For instance, they misunderstood how software handles extremely small values (e.g., $<10^{-320}$) and falsely claim that one needs more powerful computers for collostructional computations (when all that is needed is a specific software package, which would allow any normal computer to handle such numbers); also, they object to how most collostructional applications compute association strength (using the p-value of a Fisher-Yates exact test), but at least some of their argumentation is even self-contradictory: For instance, they criticize p_{FYE} for, among other things, being bidirectional, but devote quite some space to discussing an alternative they prefer, the odds ratio, which is also bidirectional. For the specifics of this debate, see Bybee (2010: Chapter 5) and Gries (2012) for a rebuttal; as well as Schmid & Küchenhoff (2013) and Gries (2015a) for another rebuttal; Gries (2019a) is an attempt to put collostructional analysis on a new statistical foundation, so to speak, by encouraging the use of many more and independent dimensions of information that an analyst should consider, namely frequency, association (independently of frequency and potentially bidirectionally), dispersion, entropy, and potentially others.

In some recent research, collostructional methods are now more often combined with other kinds of data and methods (see the discussion of Ellis et al. 2016, Sommerer & Baumann 2021, or Chen, to appear), and collostructional results are now sometimes included as predictors or control
variables, given how they can help bring item-specific (e.g. verb-specific) variability under statistical control. This may also help validate/critique the approach, but of course much remains to be done and by now many such attempts are underway. For example, Bernolet & Colleman (2016) raise the bar for just about all collostructional studies in how they take polysemy more seriously than nearly all others by incorporating sense information into the analysis. Gries (2015b) is a first step to try to disentangle the correlations between directions of attraction and experimental data in the as-predicative. Flach (2020b) revisits the frequency-vs.-association issue with data on gonna/wanna/gotta contraction and shows that contingency/association measures consistently outperform string frequency. Finally, Herbst (2020) is an interesting new proposal to change one’s perspective on co-occurrence away from a view of items-attracted-to-constructions as in all collostructional studies (e.g. verbs in the verb slot of an argument construction) to a view of items-in-constructions.

The above is also not to imply that collostructional studies are the only examples of association measures in corpus-based CxG. As an example of a different kind of application, Cappelle et al. (2019) retrieve n-grams involving necessity modal verb lemmas from the NNC that meet a frequency and an association strength threshold (50 and $M\geq3$ respectively). Adopting a perspective of “contexts as constructions”, they then cluster the modal verb lemmas on the basis of the contexts they share; they find a hierarchical cluster structure that can be represented as $((\text{have to, need to}), \text{must, should})$ (with parentheses and square brackets indicating less and more robust clusters respectively). While not much is done with that specific quantitative result, Cappelle et al. proceed with some qualitative discussion of how the modals’ functions are reflected in terms of the preferred n-grams.

The second most widespread quantitative treatment of corpus data in CxG involves various kinds of modeling, to which we turn now.

2.4 Monofactorial, multifactorial, and multivariate approaches

Corpus-based CxG studies using both mono- and multifactorial tests have increased substantially especially over the last 10 or so years. Petré & Anthonissen (2020), for example, report results from monofactorial regressions on individual variation in diachronic data, finding, among other things, excellent fits of (i) first attestations of motionless be-going-to INF in the 16-17th centuries with time (the expected logistic s-curves) and (ii) within-individual uses of Nominativus-cum-Infinitivo and prepositional passive constructions. However, the ‘standard’ by now are multifactorial/multivariate approaches. While I am splitting this section up into inferential and exploratory approaches, it needs to be pointed out that that dividing line is often more tenuous than one might think. Many studies use inferential tools such as regression modeling, but incorporate a certain degree of exploration because their modeling involves model selection; similarly, a method like HCFA as in Abdulrahim (2019) also combines inferential and exploratory aspects. In addition, the notion of ‘exploratory’ I am using is rather broad and intended to cover both methods covered in traditional statistics textbooks such as different kinds of cluster analyses, principal component/factor analysis, correspondence analysis, multidimensional scaling etc. but also unsupervised machine-learning methods such as vector spaces, deep learning, etc.

2.4.1 Inferential/statistical approaches

It seems as if the vast majority of multifactorial corpus-based CxG studies uses some kind of regression modeling, i.e. the application of statistical tools that are extensions of simple correlational statistics to situations where the behavior of one response variable (often the effect
of a hypothesized cause-effect scenario) is explored with regard to how it varies as a function of multiple predictor variables (often the causes in that hypothesized cause-effect scenario). The range of applications of such methods is huge because they are useful for really any kind of correlational hypothesis and, at least as a proxy, for any kind of causal hypothesis that can be ‘translated’ into a correlational effect or pattern of effects.

As an example in the areas of individual variation and productivity, for instance, De Smet (2020) studies constructional morphological productivity (-ly and -ness derivation) based on hapax across individuals in the NY Times and Hansard corpora to tease apart effects of token and type frequency (when controlling for several other factors in a series of linear models); interestingly, he finds an interaction effect between the frequency types that supports “a view of entrenchment as both a conservative and creative force in language” but also notes that “some variation remains irreducibly individual” (p. 251).

A big topic is alternation research on various phenomena and, by now, for various languages, and the field has come a long way since some of the earliest multifactorial studies in cognitive CxG (e.g. Gries 2003), surpassing those in sample sizes and sophistication. De Vaere et al. (to appear) is a case in point. They study German geben (‘give’) in two alternating ditransitive constructions based on 1301 occurrences from the DeReKo corpus, which were annotated for 20 morphosyntactic, semantic, and pragmatic factors and submitted to a logistic regression model. Intriguingly, in some ways, they go much beyond the current standard:

- most existing studies assume (usually implicitly) that the effect of numeric predictors can be modeled with a straight line, i.e. a linear trend, which is surprising given that very many cognitive phenomena do not apply linearly: learning, forgetting, priming, language change, etc. all involve curved trends. Laudably, De Vaere et al. accommodate this fact by allowing their numeric predictors to be curved;
- many existing studies run the risk of what is called overfitting, i.e. the the risk that a model that is fit on a certain data set fits that data set so well that it does not also generalize well to other data sets. De Vaere et al. use a statistical method called penalization, whose details are not relevant in the present context, to protect their analysis against that risk. In addition, they also use a technique called bootstrapping to make sure their model quality statistics do not exaggerate the model’s quality.
- many analyses of observational data suffer from the fact that linguistic predictors are often highly correlated with each other, a phenomenon called (multi-)collinearity. For example, NPs referring to discourse-given referents are often not just given but also short, definite, pronominal, etc. De Vaere et al. report collinearity diagnostics so that readers can contextualize their findings better.

They interpret their findings as providing evidence for the main meaning of geben being not so much literal ‘transfer from one person to another’ (as in give or hand) but a more general ‘transfer’ meaning and highlight the fact that one of the constructions is often associated with the passive voice; this echoes Gries et al. (2005) and points to maybe a more general need to include voice as a variable in collostructional and/or alternation studies; see Pijpops et al. (2018) for another application of logistic regression (on constructional contamination).

Even more frequent than ‘fixed-effects’ regressions now are mixed-effects models, which allow to take speaker-/file-specific effects (are there systematic individual differences between speakers or files?) as well as item-specific effects (are there systematic effects) into consideration
in various ways. The following is just a small overview of the published work:

- in non-native speaker / L2 research: Wulff & Gries (2019, 2021), Gries & Wulff (2021), and Azazil (2020). The latter is noteworthy for its combination of multiple predictive modeling methods (mixed-effects models and random forests) and for how those studies support the notion of frequency-based entrenchment of item-specific information;
- in native-speaker alternation research: Schäfer (2018) studies the measure NP alternation in the 21-billion words German DECOW14A corpus and, on a theoretical level, concludes that speakers’ choices require mechanisms from both prototype and exemplar models, which makes an important contribution to corpus-based studies on (degrees of) mental representation and abstraction; Flach (2020b) was mentioned above;
- in work bringing together corpus and experimental data beyond that already mentioned above, Flach (2020a) explores the ‘frequency-acceptability mismatch’ – the fact that corpus frequencies are often not a good predictor of acceptability ratings. She combines corpus data from COCA (collostructional results and the results of a correspondence analysis on go/come-V in nine different syntactic contexts) with the results of an acceptability-judgment experiment to explore with mixed-effects modeling what resolution of frequency is most related to the acceptability judgment data. She concludes “acceptability is a function of compatibility with a licensing schema, which accounts for the acceptability even of rare or corpus-absent patterns” (p. 636) and “acceptability patterns are better captured by complex than by simplistic measures” (p. 637); see Gould & Michaelis (2018) or Busso et al. (to appear) for additional examples of studies coupling observational and experimental data;
- in a diachronic (1300-2000) study of strong vs. weak past tense in several corpora of Old Dutch, De Smet & Van de Velde (2020) use mixed-effects modeling to show how the realization of past tense varies systematically with aspect (durative vs. punctual) and meaning (metaphorical vs. literal).

There is also an only slowly growing set of studies that deal with curvature in the structure between predictors and responses. Apart from the above-mentioned De Vaere et al. (to appear), for instance, Wulff & Gries (2019, 2021) incorporate polynomial predictors in mixed-effects models for learner data, and Lorenz & Titón-Couto (2019) use generalized additive mixed models in their study on the role of corpus frequency on phonological reduction.

Another recent development in much of linguistics and also in corpus-based CxG is the use of tree-based methods such as classification trees and random forests, i.e. machine-learning methods that often appear to be an attractive plan B when the nature of the data seems to not license regression modeling.

Tree-based methods try to identify structure in the relation(s) between a response and multiple predictors by determining how the data set can be split up repeatedly into successively smaller groups (based on the values of the predictors) such that, to simplify a bit, each split increases the tree’s/forests’s ability to predict the response variable (which can be numeric, but is more often categorical, such as one of several constructional choices). For instance, Fonteyn & Nini (2020) use both tree-based methods in a diachronic analysis of the gerund alternation (e.g., the eating of meat vs. eating meat) that included language-internal and -external factors and identified similarities and differences between different speakers in the 90m-words EMMA corpus. Soares da Silva et al. (2021) use a conditional inference tree to model, among other things,
the alternation of overt and null *se* constructions in Brazilian and European Portuguese from two decades and find language-internal factors (the construal of the change of state or voice) as well as language-external factors (register) to be relevant. Finally, there is work that combines corpus and experimental data as well as mixed-effects modeling and tree-based statistics, e.g. Azazil’s (2020) study of frequency effects in the L2 acquisition of the catenative verb construction by German learners of English (following up on Gries & Wulff 2009 and Martinez-Garcia & Wulff 2012).

Finally, other kinds of computational modeling are also found: Liu & Ambridge (to appear) is a study of four two-argument constructions involving actives and passives from the CCL corpus that uses Bayesian mixed-effects modeling but also naive discriminative learning (Baayen 2011), a computational learner without the hidden layers characteristic of many connectionist/neural network learners that has been argued to “enjoy psychological plausibility” (Liu & Ambridge, to appear: 21). Their results reflect how speakers balance information-structural and semantic constraints and suggest that competing constructions are retained because they offer speakers choices to express both topicalization and other implications at the same time. At the same time, their findings tell a cautionary tale as to the psychological reality of such learners because the computational learner improved when a cue that humans are sure to use – the specific lexical item – was removed from the learner. Nevertheless, such studies are interesting additions to the inventory of multifactorial/multivariate methods that have taken corpus-based CxG by storm.

2.4.2 Exploratory/computational approaches
While there is of course the major body of work on Fluid Construction Grammar – see, e.g., the special issue of *Constructions and Frames* (2017, Vol. 9, Issue 2), there is now also much more computational-linguistic work in CxG than even just 8-10 years ago. At the risk of some simplification, we can distinguish two main kinds of exploratory studies: First, there are those that are largely descriptive in nature and in such studies the starting point is one or more constructions and the goal is to see what we can learn about their function pole(s) from the results of exploratory tools applied to their distribution. Second, there are those exploratory studies whose focus is on identifying construction types and tokens in corpora in a bottom-up way; thus, in such studies, the starting point is not a construction whose distributional behavior is explored – instead, the starting is a corpus and constructions extracted from it in an automated way are the endpoint/goal (see also Chapter 23). Over the last 10 years or so, both kinds of studies have become noticeably more frequent.

As a first example of the former kind of exploratory studies, Flach (2021) uses a technique called variability-based neighbor clustering – a method to identify clusters in temporal data (e.g., acquisition or historical corpus data) that respect the temporal ordering of the data, see Gries & Hilpert (2008) – to identify temporal stages in how the *into*-causative slots have become more lexically diverse over the last 200 years, and then she shows how this change is accompanied by a subtle change in the construction’s semantics.

Next, consider the body of work by Hilpert and colleagues on modal constructions. For example, Hilpert (2016:70) explicitly extends the theory by arguing that “knowledge of a construction includes probabilistic knowledge of how that construction is associated with lexical elements” and, accordingly, combines the logic underlying frequencies and association measures with the use of multivariate exploratory methods. Using data from COCA and COHA, he explores the similarities and diachronic development of the collocational profiles of a variety of English modal verbs. For instance, multidimensional scaling of modals based on collocate frequencies
reveals, among other things, clines from informational to interpersonal uses and from deontic to epistemic modality. That kind of analysis is then extended to the diachronic data and reflects how, for instance, the location of *may* in this ‘modal space’ changes over time. Then, Hilpert follows up on an earlier collostructional analysis with a diachronic semantic vector space analysis whose results show in an unprecedented bird’s eye view how the distribution of *may*’s collocates changes over time with regard to dimensions of their abstractness and volitionality/physicality. In a related paper, Hilpert & Flach (2020) contrast *may* and *might* with each other by identifying and comparing their second-order collocates using such a vector-space method and validate the accuracy of the collocational differences by (i) reducing the collocational space using multidimensional scaling and (ii) using a binary logistic regression to determine the classificatory power of the collocates for modal choice. While the obtained classification accuracies are only moderate, Hilpert & Flach (2020:13) argue that second-order collocates “provide a statistical signal that facilitates the discrimination of deontic and epistemic modal meaning”, which in turn supports the notion of “linguistic knowledge as a network of symbolic units that are mutually interconnected at different levels of schematicity”; see also Hilpert & Correia Saavedra (2020) for a more general characterization of their methodology.

Apart from the increasing interest in vector space approaches, network-based approaches are also slowly garnering more attention. One particularly prominent example is Ellis, Römer, O’Donnell (2016), who develop semantic networks for the verb-argument constructions they study (e.g., the V *about* N construction, the V *across* N construction, etc.), derive a variety of statistics from those (e.g., betweenness and degree centrality, density, and others), and, maybe most interestingly, apply a community-detection algorithm to them to identify a variety of semantically-related coherent groups of verbs in these constructions that shed light on the polysemy of constructions and the prototypical members of semantic groups of constructions. Another example of a network study is Chen’s (to appear) structure of the network of Mandarin Chinese space particles in the constructional schema *zai* + NP + space particle in the 10m-word POS-tagged Sinica corpus. Approximately 26K pairs of nouns and particles from these constructions were analyzed with a network approach based on three inputs: (i) collostruction strengths between nouns and particles from a co-varying collexeme analysis, (ii) similarities between the nouns from a word2vec model, and (iii) cosine similarities between the particles. Chen shows that the network exhibits a scale-free structure, meaning that only a few nodes are frequently connected to other units and that most other nodes are relatively unconnected – a striking emergence of the well-known Zipfian distribution of words in constructional slots on the level of a constructional network. Also, the network indicates that experientially and interactionally more prominent particles exhibit higher degrees of local clustering and, thus, more semantic homogeneity. These kinds of observations – and others, e.g. about prototypicality within the network – would be extremely hard to make on the basis of just qualitative analysis and testify to the power of these more advanced types of methods.

As for the kind of inductive construction-identification studies that constitute the second major area of exploratory/computational CxG work, one example is Marti et al. (to appear), whose DISCOVer algorithm is “an unsupervised methodology for the automatic identification and extraction of lexico-syntactic patterns that are candidates for consideration as constructions”. This, too, is essentially a vector space method that involves identifying dimensions in co-occurrence data for lemmas and syntactic dependency relations in their contexts, specifically “tuples involving two lexical items (lemmas) related both by a dependency direction and a dependency label”. Their method, while tested on 15K lemmas from one specific corpus (the 94m words Diana-Araknion
corpus of Spanish), is applicable to any corpus with POS and syntactic dependency annotation from which one can construct clusters of lemmas that are related by their preference for a set of lexico-syntactic contexts. Interestingly, the approach makes it possible to identify construction candidates that are actually attested in the data as well as unattested-but-likely construction candidates that merit scrutiny by the human analyst.

A somewhat similar approach is Dunn (2018), who first runs a CxG induction approach (C2XG) on the UkWaC corpus and then uses the grammar learned from that to measure the similarity between inner- and outer-circle varieties of English (from the ICE project and the Leipzig corpora collection). The first part, the induction algorithm, requires as input three different levels of information for each ‘word’:

- a lexical level consisting of whitespace-separated ‘words’;
- a morphosyntactic level consisting of part-of-speech tags assigned to those words;
- a semantic level, which approximates the semantic/conceptual pole of a word with a distributional-semantics-based vector representation.

Thus, each word is represented as combination of information of these levels in n-dimensional space, which can then be clustered (e.g., using k-means analysis, a kind of cluster analysis where data points are grouped into a user-defined number of clusters).

The second part of the analysis is a classification task and attempts to determine how well a machine-learning algorithm can predict English varieties from the (relative) frequencies of the construction candidates arrived in the first step; in other words, the question is whether English varieties exhibit distinctive behavioral profile-like distributions of constructions. On a meta-theoretical level, this kind of work – cognitive sociolinguistic work that models many speakers of a variety as a whole – can provide the regionally-dialectally-motivated counterpoint to studies of individual variation.

3. Concluding remarks

Given all of the above, what is the state of the art in corpus-based CxG? I think it’s fair to say that, after the field’s Big Bang in the late 1980s, the field is still exhibiting a rapid but healthy expansion. Compared to the relative (!) paucity of corpus studies discussed in Gries (2013a), there is now a multitude of studies covering all the parameters mentioned at the beginning of this overview: (kinds of) languages studied; temporal orientation; range of corpora, registers, and genres; resolution (individual(s), speech communities); scientific goals (description, theoretical development, computational simulation); statistical methods. Even from the highly selective review offered above, it seems as if nearly every combination of choices from these features is now a lively field of inquiry advanced by the continued development, application, and – by now often – combination of quantitative methods to constructional corpus data.

However, corpus-linguistic methods and analysis have not only simply become more frequent (to the point of being mainstream), they have also helped advancing the theory itself: From Goldberg revising her definition of a construction from Goldberg (1995) to Goldberg (2006), which did away with non-compositionality as a necessary condition but added sufficient frequency as criterion, to Hilpert’s (2016) addition of probabilistic knowledge of how a construction is used to constructional knowledge, from Cappelle’s perspective of context-as-constructions to Flach’s
determination of the level of granularity constructional co-occurrence matches best one of the oldest linguistic methods (acceptability judgments), there are many ways in which corpus-based CxG has made valuable contributions (even if many may need to be revised later). In addition, one cannot help but feel that the overall quality of the field has increased as well. I would like to think this is not only a subjective impression but an assessment that can also be supported by looking at a recent critical review of cognitive-linguistic work, of which much of CxG is probably a part, namely Dąbrowska (2016). She cataloged seven deadly sins of cognitive linguistics, which I would summarize as follows:

1. excessive reliance on introspection;
2. not treating the Cognitive Commitment seriously;
3. not enough serious hypothesis testing;
4. ignoring individual differences;
5. neglecting the social aspect of language;
6. assuming that we can deduce mental representations from patterns of use;
7. assuming that distribution equals meaning.

While I ‘only’ agree with most of the points Dąbrowska is making, it does seem to me as if much of the CxG work summarized above (mostly implicitly) addresses many of these issues superbly: For instance,

- regarding 1 and 2, we see much less reliance on introspection in general, but also the combination of corpus data with various kinds of experimental work, computational simulation, interrater reliability, etc.
- regarding 3, we see a lot of hypothesis-testing now, with a wide range of sophisticated statistical/machine-learning models and networks;
- regarding 4 and 5: we see more work on both these aspects

And this does not even count the spread of CxG-inspired work into areas I have not discussed at all, e.g. work on constructions and their preferences and alternations in indigenized varieties of World Englishes (as in Mukherjee & Gries 2009, Gries & Mukherjee 2010, Bernaisch et al. 2014, Röthlisberger et al. 2017, Heller et al. 2017, Rautionaho & Deshors 2018, Brunner & Hoffmann 2020, Hoffmann 2020b, etc.). Thus, to my inevitably biased mind, the field can take a certain degree of pride in these developments that, in spite of the high degree of inertia of academia, have happened in a rather short period of time. That does not mean it’s time to rest on our laurels (see Hoffmann 2020a for a recent call to include more psycholinguistic and neurolinguistic data to CxG’s arsenal), but it does inspire hope for high standards of, and interesting findings from, future research. It’s a good time to be a corpus-based Construction Grammarian, here’s to the next 10-20 years!

References

Azazil, L. (2020). Frequency effects in the L2 acquisition of the catenative verb construction –

Gries, St. Th. 2013b. 50-something years of work on collocations: what is or should be next …

Amsterdam & Philadelphia: John Benjamins.

and syntax: Four case studies. *Constructions and Frames* 10(2), 269-305.

